华南理工大学学报(自然科学版)

• 交通运输工程 • 上一篇    下一篇

基于 K-means 聚类组合模型的公交线路客流短时预测

陈维亚 潘鑫 方晓平   

  1. 中南大学 交通运输工程学院,湖南 长沙 410075
  • 收稿日期:2018-09-29 出版日期:2019-04-25 发布日期:2019-03-01
  • 通信作者: 方晓平(1964-),女,博士,教授,主要从事交通运输规划与管理、物流经济等研究. E-mail:fangxp@ csu.edu.cn
  • 作者简介:陈维亚(1981-),男,博士,副教授,主要从事交通运输规划与管理研究. E-mail:wychen@ csu. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(61203162);湖南省自然科学基金资助项目(2018JJ2537);湖南省交通厅课题 (201723)

Short-term Prediction of Passenger Flow on Bus Routes Based on K-means Clustering Combination Models

CHEN Weiya PAN Xin FANG Xiaoping   

  1. School of Traffic and Transportation Engineering,Central South University,Changsha 410075,Hunan,China
  • Received:2018-09-29 Online:2019-04-25 Published:2019-03-01
  • Contact: 方晓平(1964-),女,博士,教授,主要从事交通运输规划与管理、物流经济等研究. E-mail:fangxp@ csu.edu.cn
  • About author:陈维亚(1981-),男,博士,副教授,主要从事交通运输规划与管理研究. E-mail:wychen@ csu. edu. cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(61203162)and the Natural Science Foundation of Hunan Province(2018JJ2537)

摘要: 预测公交线路短时客流是实现公交动态调度的关键技术. 文中通过分析客流特 性,构建了基于 K-means 聚类算法的组合预测模型. 首先利用 K-means 算法将短时客流数 据按照时变特征的相似度划分为不同聚类,然后为每类客流数据分别建立最小二乘支持 向量机、BP 神经网络、自回归滑动平均模型,并考虑天气因素的影响,用遗传算法优化模 型参数,对比预测结果,从中选择每个聚类的最佳预测模型构成组合模型. 最后以长沙市 104 路公交客流数据作为实例进行预测分析,结果显示:客流数据时变特征对模型具有选 择性,K-means 聚类组合模型能够更好地根据不同时段客流数据的时变特征进行分类,因 而有利于提高预测绩效;考虑了天气因素的 K-means 聚类组合模型能进一步提高公交线 路的短时预测绩效.

关键词: 公交线路客流, 短时预测, K-means 聚类算法, 组合预测模型

Abstract: The prediction of the short-term passenger flow on a bus route plays a key role in the daily dynamic bus dispatching system. A combined forecasting model based on K-means clustering algorithm was constructed through analyzing passenger flow characteristics. The historical short-term passenger demand data was divided into different clusters by using K-means algorithm according to the similarity of time-varying demand. Each cluster of the passen- ger demand was predicted individually by using Least Squares Support Vector Machine (LSSVM),Back Propaga- tion Neural Network (BPNN) and Auto-regressive Moving Average (ARMA). The parameters of LSSVM and BPNN were optimized by the genetic algorithms. The weather effects on passenger flow were also considered. The combination models were formed by a combination of the best prediction models for each cluster. The passenger flow data of Route 104 in Changsha of China was used for the case studies. The results show that the model combinations depend on the differences of the time-varying passenger flow. The K-means clustering method has the ability to classify the time-varying passenger flow data in different periods,which is conducive to improving the prediction performance. The K-means clustering combination models are a promising tool to predict the short-term passenger flow on a bus route,especially when considering the weather effects.

Key words: bus route passenger flow, short-term prediction, K-means clustering algorithm, combination predic- tion model

中图分类号: