华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (1): 50-57.doi: 10.3969/j.issn.1000-565X.2018.01.007

• 交通运输工程 • 上一篇    下一篇

基于K近邻模式匹配的地铁客流量短时预测

林培群 陈丽甜 雷永巍   

  1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2017-04-10 修回日期:2017-07-12 出版日期:2018-01-25 发布日期:2017-12-01
  • 通信作者: 林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究. E-mail:pqlin@scut.edu.cn
  • 作者简介:林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究.
  • 基金资助:
    国家自然科学基金资助项目(61572233);广东省科技计划项目(2016A050502006,2016A030313786);广东省交通运输厅科技项目(201502062)

Short-Term Forecasting of Subway Traffic Based on K-Nearest Neighbour Pattern Matching

LIN Peiqun CHEN Litian LEI Yongwei   

  1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2017-04-10 Revised:2017-07-12 Online:2018-01-25 Published:2017-12-01
  • Contact: 林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究. E-mail:pqlin@scut.edu.cn
  • About author:林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China(61572233) and the Science and Technology Planning Project of Guangdong Province(2016A050502006,2016A030313786)

摘要: 为准确预测地铁客流量,以便更好地进行车辆调度和站点管理,提出一种基于 K 近邻模式匹配的地铁客流量短时预测方法. 通过分析地铁客流数据,发现地铁的日客流发展模式具有一定规律;针对该发现,提出一种基于误差变化率计算的自适应 K 值获取算法,自动获取合适的 K 值以提高预测算法的普适性. 最后以广州火车南站地铁站为例进行实例分析,结果表明:所提出的方法同时适用于节假日与非节假日两种不同交通模式的地铁客流预测,平均预测精度在 90%左右,具有较好的应用推广价值.

关键词: 地铁客流量, 短时预测, K 近邻算法, 日客流发展模式, 模式匹配

Abstract: In order to forecast the subway traffic accurately and better the vehicle scheduling and site management,a short-term forecasting of subway traffic based on K-nearest neighbour pattern matching is proposed. By analyzing the subway traffic data,it is found that the day passenger flow development mode of subway has a certain law.Thus,an adaptive K acquisition algorithm based on the calculation of error rate is proposed,it can improve the uni-versality of the prediction algorithm by automatically obtaining the appropriate K. Finally,Guangzhou South Rail-way Station is taken as an example for the case study. The experimental results show that the method proposed is applicable to the subway passenger flow forecast of two different modes of traffic-holidays and non-holidays,its ave-rage prediction accuracy is about 90%. It can be seen that this method has a good application value.

Key words: subway traffic, short-term forecasting, K-nearest neighbor algorithm, day passenger flow development mode, pattern matching

中图分类号: