华南理工大学学报(自然科学版) ›› 2019, Vol. 47 ›› Issue (7): 40-48,57.doi: 10.12141/j.issn.1000-565X.180571

• 土木建筑工程 • 上一篇    下一篇

模拟植物生长算法的结构优化新机制

石开荣1,2 潘文智1 姜正荣1,2† 罗斌3   

  1. 1. 华南理工大学 土木与交通学院,广东 广州 510640; 2. 华南理工大学 亚热带建筑科学国家重点实验室, 广东 广州 510640; 3. 东南大学 土木工程学院,江苏 南京 210096
  • 收稿日期:2018-11-15 修回日期:2019-03-11 出版日期:2019-07-25 发布日期:2019-06-01
  • 通信作者: 姜正荣(1971-),男,博士,副教授,主要从事高层钢结构、大跨度空间结构研究. E-mail:zhrjiang@scut.edu.cn
  • 作者简介:石开荣(1978-),男,博士,副教授,主要从事预应力钢结构、大跨度空间结构研究. E-mail:krshi@ scut. edu. cn
  • 基金资助:
    国家自然科学基金资助项目(11673039);亚热带建筑科学国家重点实验室开放课题(2019ZB27)

Novel Mechanisms of Structural Optimization Based on Plant Growth Simulation Algorithm

SHI Kairong1,2 PAN Wenzhi1 JIANG Zhengrong1,2 LUO Bin3   

  1. 1. School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China; 2. State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou 510640,Guangdong, China; 3. School of Civil Engineering,Southeast University,Nanjing 210096,Jiangsu,China
  • Received:2018-11-15 Revised:2019-03-11 Online:2019-07-25 Published:2019-06-01
  • Contact: 姜正荣(1971-),男,博士,副教授,主要从事高层钢结构、大跨度空间结构研究. E-mail:zhrjiang@scut.edu.cn
  • About author:石开荣(1978-),男,博士,副教授,主要从事预应力钢结构、大跨度空间结构研究. E-mail:krshi@ scut. edu. cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (11673039)

摘要: 作为一种新型启发式智能优化算法,模拟植物生长算法(PGSA)建立以植物向光 性机理为基础的生长动力模型,以形成向全局最优解迅速生长的搜索机制. 针对大规模复 杂优化问题中生长空间大、设计变量多、可能存在多个局部最优解、算法难以自动终止等 特点,基于 PGSA 基本原理,提出了 3 种新的算法改进机制———可生长点集合限定机制、 新增可生长点剔除机制以及混合步长并行搜索机制,并通过典型数学和桁架结构算例分 析对提出的改进算法的效果进行验证. 结果表明:可生长点集合限定机制能有效控制生长 空间规模,具有较强的局部搜索能力;新增可生长点剔除机制通过与前者的结合,为 PGSA 提供了有效的算法终止机制;混合步长并行搜索机制在生长前期便具备优异的全局搜索 能力,能快速获取到最优解范围. 所提出的新机制显著提升了 PGSA 算法优化的有效性及 适应性,从而为结构优化问题提供了新思路.

关键词: 模拟植物生长算法, 植物向光性机理, 结构优化, 并行搜索, 全局最优解, 桁架结构

Abstract: As a new heuristic intelligent optimization algorithm,plant growth simulation algorithm (PGSA) esta- blishes the dynamic growth model based on the plant phototropism mechanism and forms the search mechanism rapid- ly towards the global optimal solution. According to the characteristics of large-scale complex optimization problems such as large growth space,multiple design variables,multiple local optimal solutions,difficulty in automatic ter- mination and so on,three novel improved mechanisms (the limited strategy of growth point set,the elimination strategy of new growth points,the parallel search strategy of mixed step size) were proposed based on the basic principle of PGSA and the effectiveness of the proposed improved mechanisms were proved by typical mathematic example and structural example of truss. Several conclusions can be drawn: (1) the scale of growth space can be effectively controlled by the limited strategy of growth point set,which leads to high search capacity of the algo- rithm; (2) combined with the former strategy,the elimination strategy of new growth points can provide effective termination mechanism for PGSA; (3) excellent global search capacity can be offered by the parallel search strate- gy of mixed step size in the early growth stage and the optimal solution range can be quickly obtained. The pro- posed mechanisms can dramatically improve the effectiveness and adaptability of PGSA in optimization,which pro- vides a new approach for structural optimization problems.

Key words: plant growth simulation algorithm, plant phototropism mechanism, structural optimization, parallel search, global optimal solution, truss structure

中图分类号: