华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (11): 10-16.doi: 10.3969/j.issn.1000-565X.2017.11.002

• 交通与运输工程 • 上一篇    下一篇

基于拉普拉斯变换的路面一维时变温度场预测

张丽娟1 黄建武1 许薛军2   

  1. 1. 华南理工大学 土木与交通学院,广东 广州 510640; 2. 广东省公路管理局,广东 广州 510075
  • 收稿日期:2017-02-20 出版日期:2017-11-25 发布日期:2017-10-01
  • 通信作者: 张丽娟(1968-),女,博士,副教授,主要从事路面结构与材料研究. E-mail:tczljuan@scut.edu.cn
  • 作者简介:张丽娟(1968-),女,博士,副教授,主要从事路面结构与材料研究.
  • 基金资助:
    国家自然科学基金资助项目(51678251);广东省公路管理局科研项目(2014-4);广东省佛山市公路局科研项目 (0809-1441FSD3AB37)

Prediction of Time-Dependent One-Dimension Temperature Field of Pavement on the Basis of Laplace Transform

ZHANG Li-juan1 HUANG Jian-wu1 XU Xue-jun2   

  1. 1.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China; 2.Administration Bureau for Highway of Guangdong Province,Guangzhou 510075,Guangdong,China
  • Received:2017-02-20 Online:2017-11-25 Published:2017-10-01
  • Contact: 张丽娟(1968-),女,博士,副教授,主要从事路面结构与材料研究. E-mail:tczljuan@scut.edu.cn
  • About author:张丽娟(1968-),女,博士,副教授,主要从事路面结构与材料研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China(51678251)

摘要: 提出了一种基于拉普拉斯变换及高斯积分法数值反演的预测多层路面结构体系的一维时变温度场解析方法. 采用热传导方程建立自然环境下路面结构的一维时变温度 场数学模型,应用基于最小二乘近似的内插三角函数多项式拟合一定周期内的气温和太 阳辐射强度,据此确定路表边界条件;利用高斯积分公式进行拉普拉斯数值反演,可以很 容易地得出一维时变路面结构温度场的解析解;通过与旧水泥路面加铺沥青层路面结构 夏季和冬季实测温度场数据的对比验证,发现预测的各路面深度处温度和实测温度的最 大偏差在 3℃以下,表明利用文中模型预测路面结构温度场的精度非常高.

关键词: 道路工程, 路面, 温度场, 预测, 拉普拉斯变换, 高斯积分法

Abstract: In this paper,an analytical method for predicting the time-dependent one-dimension temperature field in a multilayered pavement system is proposed on the basis of the Laplace transform as well as of the inverse Laplace transform being resolved numerically by the Gaussian quadrature formula.In the method,first,a time-dependent one-dimension mathematical temperature model of pavement in natural environment is constructed by the heat con- duction equation.Then,the air temperature and the solar radiation intensity in a user-defined time interval are fit- ted by means of the interpolatory trigonometric polynomials on the basis of the discrete least-square approximation,on which a surface boundary condition is determined.Finally,with the aid of the Gaussian quadrature formula,the inverse Laplace transform is solved,so that the analytical solution of the time-dependent one-dimension temperature field can be easily derived.The results are compared with the measured temperatures in the asphalt overlay on the existing cement concrete pavement system in both summer and winter,it is found that the maximum error of the pre- dicted temperature and the measured one at different depth locations is less than 3℃,meaning that the proposed method achieves a high precision in predicting the pavement temperature field.

Key words: road engineering, pavement, temperature field, prediction, Laplace transform, Gaussian quadrature formula