华南理工大学学报(自然科学版)

• 交通运输工程 • 上一篇    下一篇

转向架参数测定试验台位姿正解

王启明 苏建 牛治慧 林慧英 徐观   

  1. 吉林大学 交通学院,吉林 长春 130025
  • 收稿日期:2016-07-22 出版日期:2017-08-25 发布日期:2017-07-02
  • 通信作者: 林慧英(1974-),女,博士生,讲师,主要从事车辆智能化检测研究. E-mail:sujianjd@163.com
  • 作者简介:王启明(1991-),女,博士生,主要从事车辆智能化检测研究. E-mail:wang.qiming2008@163. com
  • 基金资助:
    国家自然科学基金资助项目(51575232);吉林省科技厅重点科技攻关项目(20160204018GX)

Forward Kinematics of Test Bench for Bogie Parameters

WANG Qi-ming SU Jian NIU Zhi-hui LIN Hui-ying XU Guan   

  1. School of Transportation,Jilin University,Changchun 130025,Jilin,China
  • Received:2016-07-22 Online:2017-08-25 Published:2017-07-02
  • Contact: 林慧英(1974-),女,博士生,讲师,主要从事车辆智能化检测研究. E-mail:sujianjd@163.com
  • About author:王启明(1991-),女,博士生,主要从事车辆智能化检测研究. E-mail:wang.qiming2008@163. com
  • Supported by:
    Supported by the National Natural Science Foundation of China(51575232)

摘要: 并联机构位姿正解求解运用的 Newton-Raphson 迭代法对初值有很强依赖性,且 收敛速度较慢,无法满足实时性要求. 为此文中提出基于 Levenberg-Marquardt(L-M)算法 的改进 BP 分类神经网络结构模型和高阶收敛改进 Newton-Raphson 迭代法(HMNR)相结 合求解并联机构位姿正解. 以转向架参数测定试验台为例,借助位姿反解将轨道谱路谱转 化成试验台作动器的伸缩量指令,将其给定到液压系统中,驱动试验台耦合运动模拟车体 或转向架在该路谱线路上的运行状态. 运用大量实际运行样本数据作为训练数据,实现了 试验台位姿正解的初值求解,并与常用的基于拟牛顿算法(BFGS)的神经网络模型和量化 共轭梯度(SCG)算法的神经网络模型进行对比分析. 结果表明,L-M 算法模型在误差性能 分析上明显优于 BFGS 与 SCG 算法模型,且预测角度值误差均小于 4 ×10 -7 ,位移值误差 均小于 8 ×10 -4 . 将预测值作为 HMNR法的初值,进行迭代计算,较之 Newton-Raphson (NR)法迭代次数减少 41%,迭代时间缩短 23%. 将此混合策略用于试验台,进行实际相 邻车端相对位姿测量试验,进一步验证了该策略的有效性.

关键词: 轨道车辆, 位姿正解, 冗余, 6-DOF 并联机构, Levenberg-Marquardt 算法, 高阶收敛

Abstract: The existing Newton-Raphson iterative method used for the forward kinematics of parallel mechanisms has a strong dependency on the initial value with a slow iteration convergence speed,and thus the instantaneity can- not be satisfied.In order to solve these problems,a combinatorial method of a new improved BP Neural Network model based on the Levenberg-Marquardt algorithm and the high-order modified Newton-Raphson (HMNR) itera- tion method is proposed to achieve the forward kinematics of Redundancy parallel mechanism.Then,by taking a test bench for bogie parameters (TBBP) as the example,the track spectrum is converted to the displacement of the actuator with the help of the invert kinematics.Hydraulic system received the instruction of displacement to propel the test bench's coupling motion,which is used to simulate the running status of the real vehicle or bogie on real tracks.By using a mass of actual data as the training material,the initial value of the forward kinematics of the test bench is thus determined,which is then compared with those obtained through the neural network models respec- tively based on the quasi-Newton algorithm BFGS and the scaled conjugate gradient (SCG) algorithm.Experimen- tal results show that the L-M algorithm model is obviously superior to the BFGS algorithm model and the SCG algo- rithm model in terms of the error performance analysis,with a predicted angle value of less than 4 ×10 -7 and a dis- placement error of less than 8 ×10 -4 .In addition,the predicted value is taken as the initial value of the HMNR method to perform an iterative calculation,which causes a 41% reduction in the required iterations and a 23% re- duction in the iteration time in comparison with the Newton-Raphson (NR) method.Finally,by applying the hy- brid strategy on the TBBP for testing the relative position and attitude of adjacent vehicles,the effectiveness of the hybrid strategy is further validated.

Key words: railway vehicle, forward kinematics, redundancy, 6-DOF parallel mechanism, Levenberg-Mar- quardt algorithm, higher-order convergence