华南理工大学学报(自然科学版) ›› 2016, Vol. 44 ›› Issue (12): 53-60.doi: 10.3969/j.issn.1000-565X.2016.12.008

• 交通与运输工程 • 上一篇    下一篇

基于改进 FCM 聚类的交通控制时段划分

于德新1,2 田秀娟1 杨兆升1,2   

  1. 1. 吉林大学 交通学院,吉林 长春 130022; 2. 吉林省道路交通重点实验室,吉林 长春 130022
  • 收稿日期:2016-01-23 修回日期:2016-06-12 出版日期:2016-12-25 发布日期:2016-11-01
  • 通信作者: 于德新(1972-),男,教授,博士生导师,主要从事智能交通系统、交通控制理论与技术研究. E-mail:1255277858@qq.com
  • 作者简介:于德新(1972-),男,教授,博士生导师,主要从事智能交通系统、交通控制理论与技术研究.
  • 基金资助:

    国家科技支撑计划项目(2014BAG03B03)

Division of Traffic Control Periods Based on Improved FCM Clustering

YU De-xin1,2 TIAN Xiu-juan1 YANG Zhao-sheng1,2   

  1. 1.School of Transportation,Jilin University,Changchun 130022,Jilin,China; 2.Jilin Province Key Laboratory of Road Traffic,Changchun 130022,Jilin,China
  • Received:2016-01-23 Revised:2016-06-12 Online:2016-12-25 Published:2016-11-01
  • Contact: 于德新(1972-),男,教授,博士生导师,主要从事智能交通系统、交通控制理论与技术研究. E-mail:1255277858@qq.com
  • About author:于德新(1972-),男,教授,博士生导师,主要从事智能交通系统、交通控制理论与技术研究.
  • Supported by:
    Supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(2014BAG03B03)

摘要: 对传统的模糊 c-均值聚类算法进行改进,提出一种基于改进 FCM 聚类的交通信号控制时段划分方法. 首先,引入模糊聚类隶属度基数,对聚类数目自动选取;然后,运用模拟退火遗传混合算法对初始聚类中心进行优化. 最后,根据交叉口实际流量数据,进行时段划分,利用仿真软件进行方案效果评价. 结果表明,与传统 FCM 算法相比,文中方法能有效实现控制时段划分,更加符合实际交通特性,且能得到全局最优解. 与原有控制方案相比,FCM 方案和文中方案都能有效降低车辆平均延误,文中方案效果更明显.

关键词: 交通控制, TOD 控制, 时段划分, FCM 聚类, 模拟退火遗传算法

Abstract:

In this paper,the traditional fuzzy c-means clustering (FCM) algorithm is improved,and a method to divide the traffic signal control periods is proposed based on the improved FCM algorithm.In the method,first,a cardinal number of fuzzy clustering membership degree is introduced to automatically select the cluster number.Then,the hybrid simulated annealing genetic algorithm is employed to optimize the initial clustering center.Final- ly,the traffic control periods are divided according to the actual traffic flow data,and the performance of the schemes is evaluated by using the simulation software.The results show that,as compared with the traditional FCM algorithm,the proposed method can divide the traffic control periods more effectively and reflect the actual traffic characteristics more accurately,and it achieves a global optimal solution.In addition,in comparison with the origi- nal signal control scheme,although both the scheme based on the FCM algorithm and the proposed scheme can re- duce the average vehicle delay,the proposed scheme has a more obvious effect.

Key words: traffic control, time-of-day control, period division, FCM clustering, simulated annealing genetic al- gorithm

中图分类号: