华南理工大学学报(自然科学版) ›› 2016, Vol. 44 ›› Issue (9): 32-40.doi: 10.3969/j.issn.1000-565X.2016.09.005

• 计算机科学与技术 • 上一篇    下一篇

基于独立分量分析的扫视信号样本优化算法

吕钊1,2 陆雨1,2 周蚌艳1,2 吴小培1,2   

  1. 1. 安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230039;2. 安徽大学 信息保障技术协同创新中心,安徽 合肥 230601
  • 收稿日期:2015-09-16 修回日期:2016-03-29 出版日期:2016-09-25 发布日期:2016-08-21
  • 通信作者: 吕钊( 1979-) ,男,博士,副教授,主要从事智能信息处理与人- 机交互技术研究. E-mail:kjlz@163.com
  • 作者简介:吕钊( 1979-) ,男,博士,副教授,主要从事智能信息处理与人- 机交互技术研究.
  • 基金资助:
    国家自然科学基金资助项目( 61401002, 61271352) ; 安徽省自然科学基金资助项目( 1408085QF125) ; 安徽高校省级自然科学研究重点项目( KJ2014A011)

A Sample Optimization Algorithm of Saccade Signals Based on Independent Component Analysis

Lü Zhao1,2 LU Yu1,2 ZHOU Beng-yan1,2 WU Xiao-pei1,2   

  1. 1.Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education,Anhui University,Hefei 230039,Anhui,China; 2.Co-Innovation Center for Information Supply and Assurance Technology,Anhui University,Hefei 230601,Anhui,China
  • Received:2015-09-16 Revised:2016-03-29 Online:2016-09-25 Published:2016-08-21
  • Contact: 吕钊( 1979-) ,男,博士,副教授,主要从事智能信息处理与人- 机交互技术研究. E-mail:kjlz@163.com
  • About author:吕钊( 1979-) ,男,博士,副教授,主要从事智能信息处理与人- 机交互技术研究.
  • Supported by:
    Supported by the National Natural Science Foundation of China( 61401002, 61271352) and the Natural Science Foundation of Anhui Province( 1408085QF125)

摘要: 为改善基于眼电图( EOG) 的人体行为识别系统性能,提高多任务背景下扫视信号识别的正确率,提出了一种基于独立分量分析( ICA) 的扫视信号样本优化算法. 该算法
首先以单次扫视数据为分析对象,根据独立成分在采集电极的映射模式,设计了一种扫视相关独立成分的自动选择方法,并建立了相应的ICA 空域滤波器; 然后以原始EOG 线性投影后信号的识别正确率为度量准则实现对干扰扫视信号的剔除. 对4 类扫视信号进行了“组内测试”与“组间测试”,实验结果表明,经文中算法优化后识别正确率达99. 57%与98. 82%,比优化前分别提升了0. 57%与0. 83%,说明文中算法能够对扫视信号样本进行有效的优化,提高其识别正确率.

关键词: 眼电图, 人体行为识别, 独立分量分析, 扫视相关独立成分

Abstract: In order to improve the performance of an electrooculogram ( EOG) -based human activity recognition ( HAR) system and increase the correct recognition ratio of multi-class saccade signals,a sample optimization algorithm is proposed on the basis of independent component analysis ( ICA) .In the algorithm,by taking a single saccade data as the object,an automatic selection method of saccade related independent components ( SRICs) is designed according to the independent components ( ICs) -to-electrode mapping mode,and a corresponding ICA spatial filter is established.Then,noisy saccade samples are deleted on the basis of the correct recognition ratio of saccade signals after the linear projection of original EOGs.In the lab environment,the ICA spatial filter is utilized to classify four types of saccade signals by“run-to-run test”and“session-to session test.The results show that,in the two tests,the correct recognition ratios of the data optimized by the proposed algorithm are respectively 99.57% and 98.82%,and they are 0.57% and 0.83% higher than those of original EOG signals,which means that the proposed algorithm can effectively optimize saccade signals and thus improve the correct recognition ratio.

Key words: electrooculogram, human activity recognition, independent component analysis, saccade related independent components

中图分类号: