华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (7): 1-.doi: 10.12141/j.issn.1000-565X.240519

• 能源、动力与电气工程 •    

基于MIC-PCA-LSTM模型的垃圾焚烧炉NOx排放浓度预测研究

姚顺春1 李龙千1 刘文2 李峥辉1 周安鹂1 李文静1 陈姜宏1 卢志民1   


  1. 1.华南理工大学电力学院,广东 广州 510640

    2.广州环投花城环保能源有限公司,广东 广州 510830


  • 出版日期:2025-07-25 发布日期:2024-11-08

Research on NOx Emission Concentration Prediction of Waste Incinerator Based on MIC-PCA-LSTM Model

YAO Shunchun1  LI Longqian1  LIU Wen2  LI Zhenghui1  ZHOU Anli1  LI Wenjing1  CHEN Jianghong1  LU Zhimin1   

  1. 1. School of Electric Power, South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. Guangzhou Huantou Huacheng Environmental Protection Energy Co., Ltd., Guangzhou 510830, Guangdong, China

  • Online:2025-07-25 Published:2024-11-08

摘要:

实现垃圾焚烧过程选择性催化还原(SCR)脱硝系统出口NOx浓度的准确预测对提高数据质量和喷氨控制水平具有重要意义。垃圾焚烧过程存在显著的非线性、多变量耦合和时间序列特性,对NOx排放浓度的精准预测带来了巨大挑战。针对此问题,本文联合最大信息系数MIC)、主成分分析(PCA)和长短期记忆(LSTM)神经网络提出了一种SCR脱硝系统出口NOx排放浓度预测模型。首先,采用MIC方法计算各变量间的最大归一化互信息值,选择和NOx排放浓度相关性较大的特征变量,之后结合最大冗余原则剔除冗余变量。随后,基于PCA方法获得各主成分方差的累计贡献率,提取主成分特征,得到最优输入特征变量集。最后,利用LSTM神经网络建立SCR出口NOx排放浓度预测模型。结果表明,本文所提出的模型具有最优的预测精度和泛化能力,其平均绝对百分比误差为6.33%,均方根误差为4.71mg/m3和R2为0.9,优于反向传播神经网络(BPNN)模型和支持向量机,SVM)模型,为实现垃圾焚烧过程SCR脱硝系统喷氨智能控制提供了重要的基础。

关键词: 垃圾焚烧, 选择性催化还原, 最大信息系数, 主成分分析, 长短期记忆神经网络

Abstract:

Accurately predicting the NOx emission concentration at the outlet of the selective catalytic reduction (SCR) denitrification system in the waste incineration process is of great significance for enhancing data quality and optimizing ammonia injection. However, the waste incineration process exhibits significant nonlinearity, multivariate coupling, and time-series characteristics. These factors pose substantial challenges to achieving accurate predicting of NOx emissions. This paper presents a prediction model for NOx emission concentration at the outlet of the SCR denitrification system by integrating maximum information coefficient (MIC), principal component analysis (PCA), and long short-term memory (LSTM) neural networks. First, MIC is employed to assess the nonlinear correlations among variables, selecting input variables that exhibit the strongest correlation with NOx emission concentration while eliminating redundant variables based on the principle of maximum redundancy. Then, PCA is utilized to address the coupling characteristics among variables and to reduce information redundancy. Finally, a predicting model of NOx emission at the outlet of the SCR denitrification system is developed based on the LSTM model. The results indicate that the proposed model exhibits high accuracy and generalization ability, achieving an average absolute percentage error of 6.33%, a root mean square error of 4.71mg/m3, and 0.90 of R2. It outperforms both the back propagation neural network (BPNN) model and the support vector machine (SVM) model, thereby laying a foundation for achieving intelligent control of the SCR denitrification system in the waste incineration process.

Key words: waste incineration, selective catalytic reduction, maximum information coefficient, principal component analysis, long short-term memory neural network