华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (10): 109-117.doi: 10.12141/j.issn.1000-565X.250046

• 机械传动系统 • 上一篇    下一篇

拉维娜式行星齿轮传动系统非线性动力学

莫帅1,2  黄涛疆1,2  胡勇军1,2  陈素姣3  施文爱4   张伟1   

  1. 1.广西大学 特色金属材料与组合结构全寿命安全国家重点实验室,广西 南宁 530004;

    2.广西大学 机械工程学院,广西 南宁 530004;

    3.柳工柳州传动件有限公司,广西 柳州 545007

    4.方盛车桥(柳州)有限公司,广西 柳州 545006

  • 出版日期:2025-10-25 发布日期:2025-05-16

Nonlinear Dynamics of Ravigneaux Planetary Gear Transmission System

MO Shuai1,2  HUANG Taojiang1,2  HU Yongjun1,2  CHEN Sujiao3  SHI Wenai4  ZHANG Wei1   

  1. 1. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures,

    Guangxi University, Nanning 530004, Guangxi, China;

    2. School of Mechanical Engineering, Guangxi University, Nanning 530004, Guangxi, China;

    3. Liugong Liuzhou Driveline Co., Ltd., Liuzhou 545007, Guangxi, China;

    4. Fangsheng Axle (Liuzhou) Co., Ltd., Liuzhou 545006, Guangxi, China

  • Online:2025-10-25 Published:2025-05-16

摘要:

本文旨在提升车辆变速器运行过程中的传动平稳性,针对其中的拉维娜式行星齿轮传动系统,深入分析变速器中的拉维娜式行星齿轮传动系统的非线性振动特性,建立了一种多非线性因素耦合的拉维娜式行星齿轮传动系统动力学模型。该模型考虑时变啮合刚度、齿侧间隙、综合传动误差、动态啮合力以及时变摩擦力等非线性因素。在此基础上,推导出系统的非线性动力学微分方程组,并采用Runge-Kutta数值积分方法对系统微分方程组进行迭代求解,获取在不同外部激励频率条件下的系统动态响应特性。通过时间历程图、频谱图、时域图、相图以及Poincare图等方式揭示系统的复杂非线性动力学行为。在保持其他系统参数不变的前提下,进一步采用分岔图与空间瀑布图分析外部激励频率对系统振动响应的影响。研究结果表明:随着外部激励频率的变化,系统的振动响应经历了混沌状态到周期分岔,最终演变为稳定的单周期运动特征。本研究为调节外部激励参数以抑制非稳态振动、提升传动系统平稳性提供了理论依据和工程参考。

关键词: 拉维娜式行星齿轮, 非线性系统, 动态响应, 分岔与混沌

Abstract:

This study aims to improve the transmission stability of vehicle gearboxes during operation by focusing on the Ravigneaux planetary gear system. A comprehensive analysis of the nonlinear vibration characteristics of the Ravigneaux planetary gear transmission is conducted, and a dynamic model incorporating multiple coupled nonlinear factors is established. The model accounts for time-varying mesh stiffness, backlash, comprehensive transmission error, dynamic meshing force, and time-varying friction. Based on this, a set of nonlinear dynamic differential equations is derived, which are solved iteratively using the Runge-Kutta numerical integration method to obtain the system's dynamic response under varying external excitation frequencies. The system's complex nonlinear dynamic behavior is revealed through time history diagrams, spectrum diagram, phase diagram and Poincaré diagram. Furthermore, with other system parameters held constant, bifurcation diagrams and three-dimensional waterfall plots are employed to analyze the influence of excitation frequency on the vibration response. The results show that as the excitation frequency changes, the system’s vibration response evolves from chaotic states to periodic bifurcations, and eventually transitions to a stable single-period motion. This research provides a theoretical basis and engineering reference for adjusting excitation parameters to suppress non-steady-state vibrations and enhance the operational stability of the transmission system.

Key words: ravigneaux planetary gear, nonlinear systems, dynamic response, bifurcation and chaos