华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (1): 83-89.doi: 10.12141/j.issn.1000-565X.220785

• 交通运输工程 • 上一篇    下一篇

信号交叉口电动自行车多类别违规行为分析与建模

董春娇1 陆育霄1 马社强2 李鹏辉1 庄焱1   

  1. 1.北京交通大学 综合交通运输大数据应用技术交通运输行业重点实验室, 北京 100044
    2.中国人民公安大学 交通管理学院, 北京 100038
  • 收稿日期:2022-11-29 出版日期:2024-01-25 发布日期:2023-04-21
  • 通信作者: 马社强(1973-),男,博士,副教授,主要从事交通安全与智能交通研究。 E-mail:masheqiang@163.com
  • 作者简介:董春娇(1982-),女,博士,教授,主要从事交通安全、出行行为分析与智能交通研究。E-mail:cjdong@bjtu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(72371017);北京交通大学中央高校基本科研业务费专项资金资助项目(2022RC023)

Analyzing and Modeling of Multi-Class E-Bikes Violation Behaviors at Signalized Intersection

DONG Chunjiao1 LU Yuxiao1 MA Sheqiang2 LI PenghuiZHUANG Yan1   

  1. 1.Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport,Beijing Jiaotong University,Beijing 100044,China
    2.School of Traffic Management,People’s Public Security University of China,Beijing 100038,China
  • Received:2022-11-29 Online:2024-01-25 Published:2023-04-21
  • Contact: 马社强(1973-),男,博士,副教授,主要从事交通安全与智能交通研究。 E-mail:masheqiang@163.com
  • About author:董春娇(1982-),女,博士,教授,主要从事交通安全、出行行为分析与智能交通研究。E-mail:cjdong@bjtu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(72371017)

摘要:

电动自行车违规行为对信号交叉口通行效率和安全具有显著的影响,是重要的安全管控对象。文中基于视频录像调查法获得的信号交叉口9 726辆非机动车数据,对比分析了3类非机动车在骑行者个人属性和时空场景影响下的违规行为特征。以骑行者个人属性、信号交叉口特征和交通流特性3方面共14个因素作为协变量,构建基于多元Logistic回归的电动自行车多类别违规行为模型,以揭示信号交叉口电动自行车闯红灯骑行、占用机动车道骑行、越线等待和逆向骑行行为机理。研究结果表明:电动自行车在信号交叉口总体违规率为44.01%,是传统自行车的1.21倍;中老年电动自行车骑行者发生4种违规行为的可能性高于青年;女性骑行者更易发生越线等待和逆向骑行违规行为,男性骑行者更易发生占用机动车道骑行;增设协管员可有效降低电动自行车在信号交叉口的闯红灯、越线等待和逆向骑行行为,但同时会增加电动自行车占用机动车道骑行的可能性;设置左转专用相位能有效降低电动自行车占用机动车道骑行、越线等待和逆向骑行行为。

关键词: 交通安全, 电动自行车, 信号交叉口, 多类别违规行为, 多元Logistic回归

Abstract:

The e-bike violations have significant impacts on traffic efficiency and safety at signalized intersections, and they are important safety control objects. Based on the data of 9 726 non-motor vehicles at signalized intersections obtained by video survey method, the research compared and analyzed the characteristics of violation behaviors of three types of non-motor vehicles under the influence of riders’ personal attributes and time-space scenes. Considering 14 factors as covariables, including rider’s personal attributes, signalized intersection characteristics and traffic flow characteristics, a multi-category violation model of e-bikes based on multiple Logistic regression was developed to reveal the mechanism of e-bikes running red lights, occupying motor lanes, waiting for crossing lines and reverse riding at signalized intersections. The results show that: the overall violation rate of e-bikes at signalized intersections is 44.01%, which is 1.21 times that of traditional bicycles; the model middle-aged and elderly e-bike riders are more likely to commit four kinds of violations than young ones; female cyclists are more likely to cross the line waiting and reverse cycling, while male cyclists are more likely to occupy the motorway. The addition of coordinators can effectively reduce the red light running, line crossing and reverse riding behaviors of e-bikes at signalized intersections, but might increase the possibility of e-bikes occupying the motorway. Setting the exclusive phase of left turn can effectively reduce the occupation of motor vehicle lane, line crossing waiting and reverse riding behavior of e-bikes.

Key words: traffic safety, e-bike, signalized intersection, multiple violation behaviors, multiple logistic regression

中图分类号: