华南理工大学学报(自然科学版) ›› 2023, Vol. 51 ›› Issue (8): 89-97.doi: 10.12141/j.issn.1000-565X.220177

所属专题: 2023年电子、通信与自动控制

• 电子、通信与自动控制 • 上一篇    下一篇

应用于高精度定位定向的可重构GNSS射频接收机

李斌1 王日炎1,2 陈志坚1 钟世广2 彭恒2 张芳芳2 贺黉胤2 杨昆明2   

  1. 1.华南理工大学 微电子学院,广东 广州 510640
    2.广州润芯信息技术有限公司,广东 广州 510663
  • 收稿日期:2022-04-05 出版日期:2023-08-25 发布日期:2023-02-08
  • 通信作者: 陈志坚(1979-),男,博士,高级工程师,主要从事射频和毫米波集成电路研究。 E-mail:chenzhijian@scut.edu.cn
  • 作者简介:李斌(1967-),女,博士,教授,主要从事模拟和射频集成电路研究。E-mail:phlibin@scut.edu.cn
  • 基金资助:
    广东省重点领域研发计划项目(2019B010141002)

Reconfigurable GNSS RF Receiver for High-Precision Positioning and Orientation

LI Bin1 WANG Riyan1,2 CHEN Zhijian1 ZHONG Shiguang2 PENG Heng2 ZHANG Fangfang2 HE Hongyin2 YANG Kunming2   

  1. 1.School of Microelectronics,South China University of China,Guangzhou 510640,Guangdong,China
    2.Guangzhou Runxin Information Technology Co. ,Ltd. ,Guangzhou 510663,Guangdong,China
  • Received:2022-04-05 Online:2023-08-25 Published:2023-02-08
  • Contact: 陈志坚(1979-),男,博士,高级工程师,主要从事射频和毫米波集成电路研究。 E-mail:chenzhijian@scut.edu.cn
  • About author:李斌(1967-),女,博士,教授,主要从事模拟和射频集成电路研究。E-mail:phlibin@scut.edu.cn
  • Supported by:
    the Key-Area Research and Development Program of Guangdong Province of China(2019B010141002)

摘要:

针对卫星导航高精度定位定向射频(RF)接收机面临的需求种类多、体积大的问题,介绍一种应用于高精度定位定向的高集成可重构全球导航卫星系统(GNSS)射频接收机。通过采用集成四个可重构接收通道的架构,并行接收全频段GNSS信号的方法,实现了单芯片支持高精度定位或定向应用,显著降低了导航终端的体积和成本。为改善宽带信号接收,提出了一种新型无电感的高线性低噪声跨导放大器(LNTA),消除了源极电感和负载电感的使用,减少工作在不同频点导航信号时的增益和噪声波动,有利于多模多频接收的重构和降低LNTA的功耗;针对IQ相位不平衡问题,提出了一种新型的补偿方法,直接在二分频电路的钟控锁存器通路上设计阻抗可变的可编程开关阵列,通过改变25%占空比正交本振的延迟时间实现相应支路输出本振相位调整,实现了IQ不平衡的校准,提升了射频接收机的镜像抑制和处理镜像干扰的能力。测试数据表明,射频接收机实现了1.15~1.65 GHz的GNSS全频段信号覆盖,2.7 dB的最小噪声系数(NF),34.7 dBm的输出三阶交调截点功率。采用低中频、零中频可重构的架构,可灵活接收0.8~80 MHz带宽的多模GNSS信号。通过IQ不平衡补偿和通道版图布局改进,实现了58.1 dB的镜像抑制(IRR)和57 dB的通道隔离度,可有效降低镜像干扰和通道间干扰的影响。在1.2 V供电下接收通道功耗仅24.7 mW,可满足高精度定位定向GNSS射频接收机的高集成和多样化应用需求。

关键词: 射频接收机, 高精度, 定位定向, 导航, 可重构, 高线性, 低噪声

Abstract:

Aiming at the problem of multiple types of requirements and large volume, this paper introduced a highly integrated and reconfigurable Global Navigation Satellite System (GNSS) Radio Frequency (RF) receiver for high-precision positioning and orientation of satellite navigation. By adopting four reconfigurable reception channels and receiving full frequency band GNSS signals in parallel, it achieved a single chip supporting high-precision positioning or orientation applications, significantly reducing the volume and cost of navigation terminals. To improve broadband signal reception, the paper proposed a new type of inductorless high linear low noise transconductance amplifier (LNTA). It can eliminate the use of source and load inductors, reduce gain and noise fluctuations when operating in navigation signals at different frequency points, and it is conducive to the reconfiguration of multimode and multi frequency reception and reduces the power consumption of LNTA. A novel IQ phase compensation method was proposed to address the issue of IQ phase imbalance. A programmable switch array with variable impedance was directly designed on the clock controlled latch path of the binary frequency division circuit. By changing the delay time of the 25% duty cycle orthogonal LO, the corresponding branch output LO phase adjustment was realized, achieving calibration of IQ imbalance and improving the image rejection rate (IRR). Testing data shows that the RF receiver achieves full band signal coverage of GNSS from 1.15 to 1.65 GHz, a minimum noise figure of 2.7 dB, and an output third-order intermodulation point power of 34.7 dBm. Adopting a low intermediate frequency and zero intermediate frequency reconfigurable architecture, it can flexibly receive multimode GNSS signals with a bandwidth of 0.8~80 MHz. By compensating for IQ imbalance and improving channel layout, 58.1 dB IRR and 57 dB channel isolation can be achieved, effectively reducing the impact of image interference and inter channel interference. Under a 1.2 V power supply, the power consumption of the receiving channel is only 24.7 mW, which can meet the high integration and diversified application requirements of high-precision positioning and orientation GNSS RF receivers.

Key words: RF receiver, high-precision, positioning and orientation, navigation, configurable, high linearity, low noise

中图分类号: