华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (8): 1-11.doi: 10.12141/j.issn.1000-565X.200717

所属专题: 2021年交通运输工程

• 交通运输工程 • 上一篇    下一篇

引入时空特征的高速公路行程时间预测方法

林培群 夏雨 周楚昊   

  1. 华南理工大学 土木与交通学院,广东 广州 510640
  • 收稿日期:2020-11-24 修回日期:2021-01-15 出版日期:2021-08-25 发布日期:2021-08-01
  • 通信作者: 林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究。 E-mail:pqlin@scut.edu.cn
  • 作者简介:林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究。
  • 基金资助:
    国家自然科学基金资助项目(52072130,U1811463);广东省自然科学基金资助项目(2020A1515010349);华南理工大学中央高校基本科研业务费专项资金资助项目(2020ZYGXZR085)

Freeway Travel Time Prediction Based on Spatial and Temporal Characteristics of Road Networks

LIN Peiqun XIA Yu ZHOU Chuhao   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2020-11-24 Revised:2021-01-15 Online:2021-08-25 Published:2021-08-01
  • Contact: 林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究。 E-mail:pqlin@scut.edu.cn
  • About author:林培群(1980-),男,博士,教授,主要从事车联网、智能交通等研究。
  • Supported by:
    Supported by the National Natural Science Foundation of China(52072130,U1811463) and the Natural Science Foundation of Guangdong Province(2020A1515010349)

摘要: 为克服现有方法预测步长短、无法充分利用路网时空特征的局限性,实现高速公路行程时间的准确预测,基于高速公路起讫点(OD)数据集,采用随机森林模型(RF)、极端梯度提升模型(XGBoost)、长短时记忆神经网络模型(LSTM)、K-最近邻模型(KNN)、支持向量机回归模型(SVR)等5种常用算法对车辆行程时间进行多步长预测,并采用贝叶斯回归方法对各算法进行融合,融合模型可综合各预测算法的优点,具有更高的精度和鲁棒性。以广东水官高速龙岗至布龙段为例,对未来2h内每15min的车辆行程时间进行预测,并从预测精度和训练时长等方面对各算法的性能进行了对比分析。结果表明:多种步长下,随机森林算法和XGBoost算法的整体预测效果稳定;在步长较短(未来30min)的预测中,LSTM具有最高的精度;基于贝叶斯回归的融合预测方法综合了各预测算法的优点,整体预测精度最高。

关键词: 行程时间预测, 机器学习, 时空特征, 高速公路, 贝叶斯回归

Abstract: In order to overcome the shortcomings of the existing prediction methods, such as short prediction steps and insufficient utilization of spatial-temporal characteristics of road networks, and to predict the freeway travel time accurately, five commonly used prediction models, namely RF(Random Forests),XGBoost(Extreme Gradient Boosting),LSTM(Long Short-Term Memory),KNN(K-Nearest Neighbor), and SVR(Support Vector Regression), were taken to carry out multi-steps prediction of freeway travel time based on the origin and destination data set. A fusion model based on Bayesian linear regression method was proposed. The Long-gang to Bu-long section of Shui-guan Expressway in Guangdong province was taken as a case study. We predicted the travel time of every 15 minutes in the next 2 hours. The results show that the prediction performance of RF model and XGBoost model is stable under multi-steps; the LSTM model has superior prediction performance in the case of short prediction steps; the fusion method integrates the advantages of various prediction methods and has higher accuracy and robustness. The experiments also demonstrate that it has the best prediction performance.

Key words: travel time prediction, machine learning, spatial-temporal characteristics, freeway, Bayesian regression

中图分类号: