华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (3): 114-122.doi: 10.12141/j.issn.1000-565X.200131

所属专题: 2021年交通运输工程

• 交通运输工程 • 上一篇    下一篇

基于遗传算法的四轮转向-驱动汽车时变 LQR 控制

罗玉涛 周天阳 许晓通   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2020-03-25 修回日期:2020-07-13 出版日期:2021-03-25 发布日期:2021-03-01
  • 通信作者: 罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。 E-mail:ctytluo@scut.edu.cn
  • 作者简介:罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。
  • 基金资助:
    广东省科技计划项目 ( 2015B010119002,2016B010132001)

Time-Varying LQR Control of Four-Wheel Steer /Drive Vehicle Based on Genetic Algorithm 

LUO Yutao ZHOU Tianyang XU Xiaotong   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2020-03-25 Revised:2020-07-13 Online:2021-03-25 Published:2021-03-01
  • Contact: 罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。 E-mail:ctytluo@scut.edu.cn
  • About author:罗玉涛(1972-),男,教授,博士生导师,主要从事新能源汽车和无人驾驶汽车研究。
  • Supported by:
    Supported by the Science and Technology Planning Project of Guangdong Province ( 2015B010119002, 2016B010132001)

摘要: 四轮转向 - 驱动汽车相较于传统车辆能保证四轮转角/转矩独立可控,具有十 分优异的主动动力学控制性能。文中针对四轮转向 - 驱动汽车转角转矩的协调控制提出 了一种基于遗传算法的时变 LQR 控制系统。该系统区别于传统的线性化轮胎参考模型, 考虑轮胎的变刚度特性建立线性时变系统,并利用遗传算法对状态量的控制权重矩阵进 行优化。仿真结果表明,在给定的转角阶跃输入下,考虑轮胎非线性特性的时变 LQR 控制系统相较于线性化模型控制系统,对质心侧偏角的零化效果更优异,横摆角速度对 理想值的跟踪精度提升 3. 01% 。在高速低附路面下的双移线工况仿真表明,基于遗传 算法的时变 LQR 控制系统能确保车辆具有较好的轨迹跟踪能力,最大侧向位移误差控 制效果相较于前轮转向车辆提升 44% 。

关键词: 四轮转向-驱动汽车, 转角转矩协调控制, 遗传算法, LQR 控制

Abstract: As compared with traditional vehicles,four-wheel steer/drive vehicles have very good active dynamics control performance,ensuring that the four-wheel steering /torque is independently controllable. This article proposed a time-varying LQR control system based on genetic algorithm for the coordinated control of the steering angle-torque of four-wheel steer/drive vehicles. Different from the traditional linearized tire reference model,it established a linear time-varying system considering the variable stiffness characteristics of the tire,and the control weight matrix of the state quantity was optimized with the genetic algorithm. The simulation results show that under a given corner step input,the time-varying LQR control considering the non-linear characteristics of the tire is better than the linearized model control system in zeroing the center of mass sideslip angle,and the tracking accuracy of the yaw rate with ideal value is improved by 3. 01% . The simulation of the double line change under high speed and low road conditions shows that the time-varying LQR control system based on genetic algorithm ensures a better trajectory tracking ability of the vehicle,and the maximum lateral displacement error control effect is improved by 44% ,compared with that of front-wheel steering vehicles.

Key words: four-wheel steer-drive vehicle, steering angle-torque coordinated controlgenetic algorithm, LQR control

中图分类号: