华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (2): 120-130.doi: 10.12141/j.issn.1000-565X.200610

所属专题: 2021年流体动力与机电控制工程

• 流体动力与机电控制工程 • 上一篇    下一篇

内嵌微小热电偶的液压阀口温度分布实验及数值分析

陈乾鹏 冀宏 赵晶 闵为 郑直   

  1. 兰州理工大学 能源与动力工程学院∥甘肃省液压气动工程技术研究中心,甘肃 兰州 730050
  • 收稿日期:2020-10-12 修回日期:2020-11-14 出版日期:2021-02-25 发布日期:2021-02-01
  • 通信作者: 冀宏 ( 1972-) ,男,教授,博士生导师,主要从事现代液压元件基础研究及工程机械液压系统研究。 E-mail:jihong@lut.cn
  • 作者简介:陈乾鹏 ( 1989-) ,男,博士生,主要从事液压元件可靠性、精密测量技术研究。E-mail: chenqianpenglut@163.com
  • 基金资助:
    国家自然科学基金资助项目 ( 51575254) ; 兰州理工大学优秀博士学位论文培育计划项目

Experiment and Numerical Analysis of Temperature Distribution of Hydraulic Valve Orifice Based on Embedded Miniature Thermocouple

CHEN Qianpeng JI Hong ZHAO Jing MIN Wei ZHENG Zhi   

  1. Energy and Power Engineering School∥Gansu Hydraulic and Pneumatic Engineering Technology Research Center, Lanzhou University of Technology,Lanzhou 730050,Gansu,China
  • Received:2020-10-12 Revised:2020-11-14 Online:2021-02-25 Published:2021-02-01
  • Contact: 冀宏 ( 1972-) ,男,教授,博士生导师,主要从事现代液压元件基础研究及工程机械液压系统研究。 E-mail:jihong@lut.cn
  • About author:陈乾鹏 ( 1989-) ,男,博士生,主要从事液压元件可靠性、精密测量技术研究。E-mail: chenqianpenglut@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 51575254)

摘要: 液压阀口节流升温不仅会造成能量损失,而且会引发热变形,造成滑阀滞卡, 影响液压机械的稳定性甚至安全性。深入研究阀口温度分布是准确预测热变形的前提。 本研究将微小热电偶嵌入简化的平面阀口,测量了阀口开度 x 在 1 ~ 3 mm、入口压力 pin 在 0. 5 ~ 3. 0 MPa 范围内、阀口节流过程中的壁面温度分布。实验表明: 阀口节流升温 速度随压差增大而增大,x = 2 mm,pin = 3. 0 MPa 时,初始升温速度可达到 0. 79℃ /min; 节流作用下的阀口温度分布不均匀,阀口开度较小时温度梯度对压差较为敏感,x = 1 mm、pin = 3. 0 MPa 时,阀口壁面的最大温差可达到 7. 86 ℃ ; 阀口尖角部位通常会产 生明显的局部高温,在 3. 0 MPa 下升温 110 min 可达到 72. 9 ℃,但是在大开度或大压差 情况下,阀口竖直壁面亦会产生局部高温。针对这一现象,结合 ANSYS Fluent 软件中 的 Fluid-solid-heat coupling 模块和 Mixture 多相流模型进行了综合分析,结果表明涡流和 空化对阀口壁面的温度分布具有显著影响。 

关键词: 液压阀口, 节流升温, 微小热电偶, 温度分布, 数值分析

Abstract: Viscous heating of valve orifice not only wastes energy but also causes thermal deformation. It increases the risk of spool clamping and exerts a strong impact on the stability and safety of hydraulic machines. A deep research on the temperature distribution of valve orifice is the foundation of accuracy prediction of thermal deformation,so a temperature measurement method was put forward by embedding miniature thermocouples in different locations of the planar valve orifice. The experiments were conducted with the valve opening x ranges from 1 mm to 3 mm and inlet pressure pin ranges from 0. 5MPa to 3MPa. The results show that the valve orifice temperature rises with the increase of the inlet pressure; the heating rate can reach 0. 79 ℃ /min when x = 2 mm and pin = 3. 0 MPa; the temperature of valve orifice caused by viscous heating distributes unevenly,and the temperature gradient seems more sensitive to pressure drop under a small orifice. The maximum temperature difference of valve orifice can reach 7. 86 ℃ when x = 1 mm and pin = 3. 0MPa. In most cases,the sharp edge of the valve orifice is likely to generate a higher temperature,which can reach 72. 9 ℃ after heating 110 min under 3. 0 MPa. However,a higher temperature will also appear along the vertical edge under a larger valve opening or a higher pressure drop. To analyze the phenomenon,a comprehensive analysis was carried out by combining fluid-solid-heat coupling module and mixture multiphase flow model in ANSYS Fluent software. The results show that the vortex and cavitation have a strong impact on the temperature distribution in the wall of the valve orifice.

Key words: hydraulic valve orifice, viscous heating, miniature thermocouple, temperature distribution, numerical analysis

中图分类号: