华南理工大学学报(自然科学版) ›› 2021, Vol. 49 ›› Issue (12): 23-34.doi: 10.12141/j.issn.1000-565X.200639

所属专题: 2021年化学化工

• 化学化工 • 上一篇    下一篇

流延薄膜传热特性及冷却水量设计的仿真研究

殷术贵郭伟科黄栋张华伟吴后吉张春华2   

  1. 1.广东省科学院智能制造研究所 可靠性与装备技术中心,广东 广州 510650;2.广东仕诚塑料机械有限公司,
    广东 佛山 528225

  • 收稿日期:2020-10-26 修回日期:2021-05-28 出版日期:2021-12-25 发布日期:2021-12-01
  • 通信作者: 郭伟科(1978-),男,工程师,主要从事机械产品可靠性研究。 E-mail:guoweike@163.com
  • 作者简介:殷术贵(1986-),男,工程师,主要从事流动、传热数值模拟研究。
  • 基金资助:
    广东省科技计划项目(2017B090901011,2017A050501045);佛山市核心技术攻关项目(1920001001040)

Simulation Study on Heat Transfer Characteristics and Cooling water Design for the Casting Film

YIN Shugui1 GUO Weike1 HUANG Dong1 ZHANG Huawei1 WU Houji1 ZHANG Chunhua2   

  1. 1.Reliability and Equipment Technology Center, Institute of Intelligent Manufacturing,Guangdong Academy of Sciences,
    Guangzhou 510650, Guangdong, China; 2.Guangdong Simcheng Plastic Machine Co. Ltd., 
    Foshan 528225, Guangdong, China
  • Received:2020-10-26 Revised:2021-05-28 Online:2021-12-25 Published:2021-12-01
  • Contact: 郭伟科(1978-),男,工程师,主要从事机械产品可靠性研究。 E-mail:guoweike@163.com
  • About author:殷术贵(1986-),男,工程师,主要从事流动、传热数值模拟研究。
  • Supported by:
    Supported by the Science and Technology Planning Project of Guangdong Province(2017B090901011,2017A050501045)

摘要: 由于流延薄膜厚度很薄(微米级),若薄膜采用1∶1的几何模型对薄膜传热进行耦合模拟时,网格数量达百亿级别,仿真计算非常困难。论文提出薄膜加厚的传热仿真模型,即对薄膜几何模型扩大,辊筒和冷却水管道几何模型保持不变的方式,顺利实现了流延薄膜冷却过程的传热仿真模拟。研究发现:薄膜及流延辊表面温度场出现螺旋型分布,即“流道痕”现象,与热成像仪测试结果吻合;在有螺旋导流片位置处,薄膜及辊筒表面温度高,冷却水流道处温度低,薄膜轴向方向薄膜温度上下波动,波动幅度在±1℃以内;薄膜在流延辊上冷却主要分为两个阶段——温度骤冷阶段和温度平稳阶段,薄膜的冷却主要发生在骤冷阶段,骤冷时间0.03s内,薄膜温度可从220℃迅速冷却到40℃以内;提高螺旋流道内冷却水流速时,薄膜在周线方向的温度变化较小,在轴线方向薄膜平均温升斜率受流速影响较大。文中最后给出的流延辊螺旋流道内冷却水流速与薄膜轴向温升斜率的关系,可为流延辊流量设计提供技术参考。

关键词: 流延成型, 塑料薄膜, 传热特性, 流延辊, 传热模型, 数值模拟, 冷却水流速

Abstract: As the casting film is very thin (micron scale), if the 1∶1 geometric model is used to simulate the heat transfer of thin film, the number of grids will reach 10 billion level, and the simulation calculation will become very difficult. Therefore, this paper proposed a heat transfer simulation model of thin film thickening. In other words, the geometric model of film is enlarged, while the geometric model of roller and cooling water pipe remains unchanged, which can successfully realize the heat transfer simulation of the film cooling process. The study show that the temperature field on the surface of the film and the roller presents a spiral distribution, namely,“channel trace”, which is consistent with the thermal imaging test results. At the position with spiral guide vane, the surface temperature of the film and roller is high, the temperature of the corresponding position of the cooling water channel is low, and the film temperature fluctuates up and down in the axial direction of the film, with an amplitude of less than±1℃. The cooling process of casting film on the tape casting roller can be divided into two stages:temperature quenching stage and temperature stable stage. The cooling of the film mainly occurs in the quenching stage, and the quenching time is 0.03s, during which the film temperature can rapidly dropped to less than 40℃ from 220℃. The increase of the cooling water velocity in the spiral channel has little influence on the temperature change of the film in the circumferential direction, but has great influence on the average temperature rise slope of the film in the axial direction. The relationship between the flow velocity of cooling water in the spiral channel of tape casting roller and the slope of film axial temperature rise given at the end of this paper can provide technical reference for the design of flow rate of casting roller.

Key words: tape casting, casting film, heat transfer characteristics, casting roller, heat transfer model, numerical simulation, cooling water velocity

中图分类号: