华南理工大学学报(自然科学版) ›› 2020, Vol. 48 ›› Issue (10): 136-144.doi: 10.12141/j.issn.1000-565X.200078

• 电子、通信与自动控制 • 上一篇    

基于椭圆型度量学习空间变换的水稻虫害识别

鲍文霞 邱翔 胡根生 梁栋黄林生   

  1. 安徽大学 农业生态大数据分析与应用技术国家地方联合工程研究中心,安徽 合肥 230601
  • 收稿日期:2020-02-21 修回日期:2020-04-13 出版日期:2020-10-25 发布日期:2020-09-14
  • 通信作者: 梁栋(1963-),男,博士,教授,主要从事计算机视觉、图像处理研究。 E-mail:dliang@ahu. edu. cn
  • 作者简介:鲍文霞(1980-),女,博士,副教授,主要从事农业与生态视觉分析、模式识别研究。E-mail: bwxia@ ahu. edu. cn
  • 基金资助:
    国家自然科学基金资助项目 (61672032); 安徽省高等学校自然科学研究重点项目 (KJ2019A0030); 农业生态大数据分析与应用技术国家地方联合工程研究中心开放课题 (AE2018009)

Identification of Rice Pests Based on Space Transformation by Elliptic Metric Learning

BAO Wenxia QIU Xiang HU Gensheng LIANG Dong HUANG Linsheng   

  1. National Engineering Research Center for Agro-Ecological Big Data Analysis & Application,Anhui University,Hefei 230601,
    Anhui,China
  • Received:2020-02-21 Revised:2020-04-13 Online:2020-10-25 Published:2020-09-14
  • Contact: 梁栋(1963-),男,博士,教授,主要从事计算机视觉、图像处理研究。 E-mail:dliang@ahu. edu. cn
  • About author:鲍文霞(1980-),女,博士,副教授,主要从事农业与生态视觉分析、模式识别研究。E-mail: bwxia@ ahu. edu. cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (61672032) and Natural Science Research Pro-ject of Anhui Provincial Education Department (KJ2019A0030)

摘要: 为了提高水稻虫害识别的准确率,文中首先采用深度语义分割 U-Net 网络去除复杂背景的影响,采用滑动窗口法提取水稻虫害图像的 HSV 颜色特征和 SILTP 纹理特征,统计同一水平滑窗中特征的最大值来构成特征向量,并利用 Relief-F 算法进行优化,获取具有高辨识性的水稻虫害图像特征。同时,引入对数据具有更好区分性的椭圆型度量,通过椭圆型度量学习寻找反映虫害图像特征空间结构信息和语义信息的非线性变换,对虫害图像特征的潜在关系进行建模,使相同类别特征之间的距离减小,不同类别特征之间的距离增大; 在椭圆型度量学习过程中,通过在三元组约束函数中增加 Fro-benius 范数正则项来避免过拟合,提高泛化能力。最后,利用椭圆型度量矩阵将水稻虫害特征变换到新的特征空间,从而提升 SVM 分类器的辨识能力。对 13 类常见水稻虫害图像的识别结果表明,文中提出的算法显著提高了小样本和复杂背景下水稻虫害图像识别的准确率,可以为精准农业中农作物病虫害的智能识别提供参考。

关键词: 水稻虫害识别, 椭圆型度量, 空间变化, 三元组约束

Abstract: To improve the accuracy of identification of rice pest,an algorithm was proposed in this study. Firstly,the U-Net network of deep semantic segmentation was used to remove the influence of complex background. Then,the sliding window method was used to extract the HSV color feature and the scale-invariant local ternary pattern (SILTP) texture feature of rice pest images. The feature vector was formed by gathering the maximum value of the features in the same horizontal sliding window. Then the discriminative features of the rice pest images were ob-tained by the Relief-F optimization algorithm. At the same time,an elliptic metric with good distinguishability for data was introduced in this study. The nonlinear transformation that reflects the space structure and semantic infor-mation of rice pest image features was determined via elliptic metric learning. Then the model for the potential rela-tionship among rice pest image features was built. This model reduced the distance between same-class features but increases the distance between different-class features. In elliptic metric learning,the regular term of the Frobenius norm was added to the triple constraint function to avoid overfitting and improve generalization ability. Finally,the elliptic metric matrix was used to transform the features of the rice pest images into a new feature space. Thereby,the identification performance of the SVM classifier was improved. The identification results of 13 kinds of common rice pests show that the proposed method can significantly promote the few-shot identification accuracy of rice pest images in complex background and can provide valuable reference for the intelligent recognition of crop pest in pre-cision agriculture.

Key words: rice pest identification, elliptic metric, space transformation, triple constraint

中图分类号: