华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (10): 50-54.doi: 10.3969/j.issn.1000-565X.2011.10.009

• 电子、通信与自动控制 • 上一篇    下一篇

基于空间变化窗口的信息散度算法

程鸿1 宫炎焱1 章权兵1 张伟2   

  1. 1.安徽大学 计算智能与信号处理教育部重点实验室,安徽 合肥 230039;2.香港中文大学 电子工程系,香港 999077
  • 收稿日期:2010-11-30 修回日期:2011-07-05 出版日期:2011-10-25 发布日期:2011-09-01
  • 通信作者: 程鸿(1981-) ,女,博士生,讲师,主要从事计算机视觉、图像处理等的研究. E-mail:chenghong@ahu.edu.cn
  • 作者简介:程鸿(1981-) ,女,博士生,讲师,主要从事计算机视觉、图像处理等的研究.
  • 基金资助:

    国家自然科学基金资助项目( 60872106, 41001244) ; 安徽大学青年科学研究基金资助项目( kjqn1010)

Information Divergence Algorithm Based on Space-Variant Window

Cheng HongGong Yan-yanZhang Quan-bingZhang Wei2   

  1. 1, Key Laboratory of Intelligent Computing and Signal Processing of the Ministry of Education,Anhui University,Hefei 230039,Anhui,China; 2. Department of Electronic Engineering,The Chinese University of Hong Kong,Hong Kong 999077,China
  • Received:2010-11-30 Revised:2011-07-05 Online:2011-10-25 Published:2011-09-01
  • Contact: 程鸿(1981-) ,女,博士生,讲师,主要从事计算机视觉、图像处理等的研究. E-mail:chenghong@ahu.edu.cn
  • About author:程鸿(1981-) ,女,博士生,讲师,主要从事计算机视觉、图像处理等的研究.
  • Supported by:

    国家自然科学基金资助项目( 60872106, 41001244) ; 安徽大学青年科学研究基金资助项目( kjqn1010)

摘要: 为解决传统信息散度算法存在物体图像大小不一致以及非连续区域深度恢复精度低等问题,提出了一种新的基于空间变化窗口的信息散度算法.该算法计算两幅原散焦图像之间的单应矩阵,并利用单应矩阵重新矫正原图像以获得相同大小的散焦图像对,通过空间变化的窗口结构来估计不连续区域附近的深度.模拟实验和实际图像实验结果表明,文中改进算法可以避免平滑非连续域的深度值并提高估计的精度.

关键词: 散焦图像, 深度恢复, 空间变化窗口, 信息散度, 等焦面假设, 单应矩阵

Abstract:

In order to solve such problems existing in the traditional information divergence algorithm as the inconsistence of object image sizes and the low accuracy of the depth recovery in non-contiguous areas,a new information divergence algorithm is proposed based on space-variant window. In this algorithm,first,the homography matrix between two original defocused images is calculated. Then,by using this homography matrix,the original images are rectified to obtain new defocus images of the same size. Moreover,the depth of non-contiguous area is estimated through the space-variant window structure. The simulated and real-image experimental results show that the proposed algorithm can avoid the smoothing depth in discontinuities and improve the precision.

Key words: defocused image, depth recovery, space-variant window, information divergence, equifocal assumption, homography matrix