华南理工大学学报(自然科学版) ›› 2018, Vol. 46 ›› Issue (11): 39-46.doi: 10.3969/j.issn.1000-565X.2018.11.006

• 材料科学与技术 • 上一篇    下一篇

Bi-In-Sn-Sb四元合金界面材料热性能研究

李静1,2 陈旭阳1 雷汝白1 张定1 樊春雷1   

  1. 1. 华南理工大学 化学与化工学院,广东 广州 510640;
    2. 华南理工大学 珠海现代产业创新研究院,广东 珠海 519175
  • 收稿日期:2018-03-07 修回日期:2018-07-24 出版日期:2018-11-25 发布日期:2018-10-02
  • 通信作者: 李静( 1966) ,女,博士,教授,主要从事强化传热及新材料等的研究 E-mail:ljing@scut.edu.cn
  • 作者简介:李静( 1966) ,女,博士,教授,主要从事强化传热及新材料等的研究
  • 基金资助:
    国家自然科学基金资助项目( 51476193,51176053) ;
    国防部科技工业局“十三五”民用航天技术预研项目( 50101-2018-0167,A2180150) 

Research on Thermal Performance Of Bi-In-Sn-Sb Quaternary Alloy Interface Materials

 LI Jing1, 2 CHEN Xuyang1 LEI Rubai1 ZHANG Ding1 FAN Chunlei1   

  1. 1. School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China;
    2. SCUT-Zhuhai Institute of Modern Industrial Innovation,Zhuhai 519175,Guangdong,China
  • Received:2018-03-07 Revised:2018-07-24 Online:2018-11-25 Published:2018-10-02
  • Contact: 李静( 1966) ,女,博士,教授,主要从事强化传热及新材料等的研究 E-mail:ljing@scut.edu.cn
  • About author:李静( 1966) ,女,博士,教授,主要从事强化传热及新材料等的研究
  • Supported by:
    The National Natural Science Foundation of China( 51476193,51176053) and the“13th Five-Year Plan”Civil Aerospace Technology Pre-Research Project of the State Administration of Science,Technology,and Industry for National Defense( 501-01-2018-0167,A2180150) 

摘要: 合金界面材料凭借优异的接触热阻消除率被广泛应用于电子工业, 以提高材料接触面之间的热传导性能. 本文通过在Bi-In-Sn三元合金中添加微量膨胀金属粒子Sb并于管式炉中700 ℃熔融工艺, 制备了一种新奇的Bi-In-Sn-Sb四元合金. 该合金具有较低的熔点(~61 ℃), 较高的导热系数(~23.8 W m-1 k-1)和极低的接触热阻(~12.3 mm2 K W-1), 其对陶瓷基板间界面热阻消除率可达到95.9%, 这能够极大促进基板之间的热传导. 研究发现这是因为Bi-In-Sn-Sb四元合金在相变后体积膨胀率高达88.6% (在80 ℃), 能够有效减少界面之间的空气带隙残留量, 改善接触面质量. 因此, 这种相变膨胀Bi-In-Sn-Sb四元合金最可能成为高性能热界面材料的候选者.

关键词: 界面材料, Bi-In-Sn-Sb 四元合金, 相变, 接触热阻, 膨胀率 

Abstract: Alloy interface materials with excellent thermal contact resistance elimination rate are widely used in the electronics industry to improve the thermal conductivity between material contact surfaces. In this paper, a novel Bi-In-Sn-Sb quaternary alloy was fabricated by adding a small amount of expandable metal Sb to Bi-In-Sn ternary alloy and smelting it in a tube furnace at 700 ℃. This alloy has a low melting point (~ 61 ℃), high thermal conductivity (~ 23.8 W m-1 k-1) and extremely low thermal contact resistance (~ 12.3 mm2 K W-1). The eliminating efficiency of thermal resistance between ceramic substrates is up to 95.9%, which can greatly improve the heat transfer performance between the substrates. The results show that the volumetric expansion rate of Bi-In-Sn-Sb quaternary alloy is as high as 88.6% after phase change (at 80 ℃), which can effectively reduce the residue of air gap between interfaces and improve the quality of contact surfaces. Therefore, the expandable phase change Bi-In-Sn-Sb quaternary alloy most likely becomes a good candidate of high performance thermal interface materials.

Key words: interface materials, Bi-In-Sn-Sb quaternary alloy, phase change, thermal contact resistance, expansion rate

中图分类号: