华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (6): 20-24,30.doi: 10.3969/j.issn.1000-565X.2017.06.004

• 物理学 • 上一篇    下一篇

静电场作用下电介质电热效应的热力学机理

韩光泽 邢倩   

  1. 华南理工大学 物理系,广东 广州 510640
  • 收稿日期:2016-06-16 出版日期:2017-06-25 发布日期:2017-05-02
  • 通信作者: 韩光泽(1964-),男,博士,教授,主要从事工程热物理研究. E-mail:phgzhan@scut.edu.cn
  • 作者简介:韩光泽(1964-),男,博士,教授,主要从事工程热物理研究.
  • 基金资助:

     国家自然科学基金资助项目(51576068)

Thermodynamic Mechanism of Electrocaloric Effect of Dielectrics in Electrostatic Field

HAN Guang-ze XING Qian   

  1. Department of Physics,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2016-06-16 Online:2017-06-25 Published:2017-05-02
  • Contact: 韩光泽(1964-),男,博士,教授,主要从事工程热物理研究. E-mail:phgzhan@scut.edu.cn
  • About author:韩光泽(1964-),男,博士,教授,主要从事工程热物理研究.
  • Supported by:

     Supported by the National Natural Science Foundation of China(51576068)

摘要: 以电热效应为基础的固体制冷技术在微电子器件散热等方面有重要的应用. 文 中将极化能引入热力学基本微分方程,导出了静电场作用下系统的热容、温度、熵和热流 量等随外场变化的计算公式,并选用钛酸钡的实验数据验证热力学理论公式,发现这些热 力学理论计算式与文献资料提供的实验结果相符. 研究表明,电偶极矩随外界温度发生变 化是产生电热效应的基础,且介电常数的温度变化率越大,电热效应越明显,因此巨电热 效应的研究方向应该是寻找介电常数随温度的剧烈变化区域.

关键词: 电介质, 电热效应, 热力学, 静电场, 钛酸钡

Abstract:

The promising solid-state refrigerator based on the electrocaloric effect plays an important role in the cooling of microelectronic devices.In this paper,a fundamental thermodynamic differential equation considering the polar energy was proposed,and the thermodynamic expressions of heat capacity,temperature,entropy and heat flux in electrostatic field were derived.Then,a verification of the expressions was conducted by using the experimental data of barium titanate,and a good accordance was found.It is concluded that the electrocaloric effect owes itself to the variation of electric dipole moment with temperature and becomes obvious with the increase of temperature sensi- tivity of permittivity.Thus,the research on giant electrocaloric effect in the future should focus on the drastic change region of permittivity with temperature.

Key words: dielectric, electrocaloric effect, thermodynamics, electrostatic field, barium titanate