华南理工大学学报(自然科学版) ›› 2017, Vol. 45 ›› Issue (10): 108-113.doi: 10.3969/j.issn.1000-565X.2017.10.015

• 电子、通信与自动控制 • 上一篇    下一篇

基于稀疏先验和相对总变分的图像盲去模糊

姚若河1 饶敬松1 刘伟俭2   

  1. 1. 华南理工大学 电子与信息学院,广东 广州 510640; 2. 广东威创视讯科技股份有限公司,广东 广州 510670
  • 收稿日期:2016-11-29 修回日期:2017-02-25 出版日期:2017-10-25 发布日期:2017-09-01
  • 通信作者: 姚若河(1961-),男,教授,博士生导师,主要从事集成电路系统设计、数字信号处理及应用研究. E-mail:phryao@scut.edu.cn
  • 作者简介:姚若河(1961-),男,教授,博士生导师,主要从事集成电路系统设计、数字信号处理及应用研究.
  • 基金资助:
     广东省科技计划项目(2015B090909001);广州市科技计划项目(2014Y2-00211)

Blind Image De-blurring Based on Sparse Prior and Relative Total Variation

YAO Ruo-he1 RAO Jing-song1 LIU Wei-jian2   

  1. 1.School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China; 2.VTRON Technology Company,Guangzhou 510670,Guangdong,China
  • Received:2016-11-29 Revised:2017-02-25 Online:2017-10-25 Published:2017-09-01
  • Contact: 姚若河(1961-),男,教授,博士生导师,主要从事集成电路系统设计、数字信号处理及应用研究. E-mail:phryao@scut.edu.cn
  • About author:姚若河(1961-),男,教授,博士生导师,主要从事集成电路系统设计、数字信号处理及应用研究.
  • Supported by:
     Supported by the Science and Technology Research Projects of Guangdong Province(2015B090909001)

摘要: 在图像盲去模糊中,从单一模糊图像估计模糊核是个严重不适定问题. 文中提出了一种基于稀疏先验和相对总变分的图像盲去模糊方法. 该方法用权值 L0 平滑方法自适应地提取图像主体结构,剔除图像噪声、细节和小尺度物体边缘等不利于模糊核估计的因素; 用相对总变分方法解决稀疏先验作为正则项估计复杂模糊核所存在的不准确性; 用超拉普拉斯先验的正则化方法进行清晰图像估计. 实验结果表明,文中算法相对于现有的图像去模糊方法,所估计出的清晰图像具有较好的结构和较少的伪迹,图像复原效果好.

关键词: 权值L0, 模糊核估计, 相对总变分, 运动去模糊, 稀疏先验, 显著边缘

Abstract: In a blind image de-blurring,estimating a blur kernel from a single blurred image is a severely ill-posed problem.In this paper,a blind image de-blurring method based on sparse prior and relative total variation is pro- posed.In this method,a smoothing algorithm based on weighted L0 is employed to adaptively extract the main structure of an image and remove such factors adverse to a kernel estimation as the noise,the details and the edges of a small object,and a relative total variation method is adopted to overcome the inaccuracy of estimating a com- plex blur kernel by means of the regularization method of the sparse prior.Moreover,the regularization method of the Super-Laplacian prior is used to estimate the latent image.Experimental results show that,as compared with the existing image de-blurring method,the proposed method helps achieve the latent image of better structure and less artifacts,and it can better recover the latent image.

Key words: weighted L0, kernel estimation, relative total variation, motion de-blurring, sparse prior, salient edge

中图分类号: