华南理工大学学报(自然科学版) ›› 2014, Vol. 42 ›› Issue (7): 49-54.doi: 10.3969/j.issn.1000-565X.2014.07.008

• 计算机科学与技术 • 上一篇    下一篇

基于时空特性的短时交通流预测模型

邱敦国 兰时勇 杨红雨   

  1. 四川大学 计算机学院,四川 成都 610065
  • 收稿日期:2014-01-27 出版日期:2014-07-25 发布日期:2014-06-01
  • 通信作者: 兰时勇(1974-),男,博士,讲师,主要从事智能交通研究. E-mail:lanshiyong2013@163.com
  • 作者简介:邱敦国(1973-),男,博士生,工程师,主要从事智能交通研究.E-mail:qiudunguo@163.com
  • 基金资助:

    国家 “863” 计划项目(2014AA110302)

Short- Term Traffic Flow Forecast Model Based on Temporal- Spatial Characteristics

Qiu Dun- guo Lan Shi- yong Yang Hong- yu   

  1. College of Computer Science,Sichuan University,Chengdu 610065,Sichuan,China
  • Received:2014-01-27 Online:2014-07-25 Published:2014-06-01
  • Contact: 兰时勇(1974-),男,博士,讲师,主要从事智能交通研究. E-mail:lanshiyong2013@163.com
  • About author:邱敦国(1973-),男,博士生,工程师,主要从事智能交通研究.E-mail:qiudunguo@163.com
  • Supported by:

    国家 “863” 计划项目(2014AA110302)

摘要: 根据交通流的历史周期性和空间相关性,文中综合SARIMA 模型在历史周期性预测上的优势和RBF 模型在空间相关性预测上的优势,提出了SARIMA- RBF 模型.该模型采用 SARIMA 模型通过历史数据预测下一时刻的交通流,然后将预测值与该点上下游关联的交通流数据相结合,采用 RBF 神经网络模型得出输出值,并将该输出值作为 SARIMA-RBF 模型对下一时刻交通流的预测结果.实验结果表明,该模型因同时考虑了交通流的历史周期性和空间相关性,相比 SARIMA 模型和 RBF 模型具有更好的交通流预测效果.

关键词: 短时交通流预测, SARIMA 模型, RBF 神经网络, 历史周期性, 空间相关性

Abstract:

According to the historical cycles and spatial correlation of traffic flows,a model named as SARIMA-RBF is proposed to forecast the short- term traffic flow,which integrates the advantage of the SARIMA model inmaking use of the historical cyclic data with that of the RBF model in making use of the spatial correlation data.Inthe proposed model,the SARIMA model is adopted to forecast the traffic flow at the next time by using historicaldata,and then the RBF model is employed to obtain the output value by combining the SARIMA- based forecastdata with the relevant traffic flow data of the upstream and downstream of test point.The output value of the RBFmodel is exactly the prediction result of the SARIMA- RBF model.Experimental results show that,in comparisonwith the SARIMA model and the RBF model,the SARIMA- RBF model achieves better results in forecasting theshort- term traffic flow,because it considers both the historical cycles and the spatial correlation.

Key words: short- term traffic flow forecasting, SARIMA model, RBF networks, historical cycle, spatial correlation