华南理工大学学报(自然科学版) ›› 2013, Vol. 41 ›› Issue (8): 21-27.doi: 10.3969/j.issn.1000-565X.2013.08.004

• 电子、通信与自动控制 • 上一篇    下一篇

融合背景信息的分块稀疏表示跟踪算法

侯跃恩 李伟光 容爱琼 叶国强   

  1. 华南理工大学 机械与汽车工程学院,广东 广州 510640
  • 收稿日期:2013-01-11 修回日期:2013-02-24 出版日期:2013-08-25 发布日期:2013-07-01
  • 通信作者: 侯跃恩(1983-),男,博士生,主要从事机器人控制与机器视觉研究. E-mail:houyueen@163.com
  • 作者简介:侯跃恩(1983-),男,博士生,主要从事机器人控制与机器视觉研究.
  • 基金资助:

    粤港关键领域重点突破项目(2011BZ100012)

Tracking Algorithm of Block Sparse Representation with Background Information

Hou Yue- en Li Wei- guang Rong Ai- qiong Ye Guo- qiang   

  1. School of Mechanical and Automotive Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2013-01-11 Revised:2013-02-24 Online:2013-08-25 Published:2013-07-01
  • Contact: 侯跃恩(1983-),男,博士生,主要从事机器人控制与机器视觉研究. E-mail:houyueen@163.com
  • About author:侯跃恩(1983-),男,博士生,主要从事机器人控制与机器视觉研究.
  • Supported by:

    粤港关键领域重点突破项目(2011BZ100012)

摘要: 针对目前的稀疏表示目标跟踪算法实时性差的问题,提出了融合背景信息的分块稀疏表示目标跟踪算法.该算法首先在粒子滤波框架下通过快速算法筛选候选目标,然后采用图像分块并给每个分块赋予不同权重的方法解决部分遮挡和噪声干扰等问题,最后将背景信息融入对象字典,并通过目标与背景信息联合表示方法计算目标的稀疏解.在Matlab 平台上将文中算法与另外2 种算法于4 组视频中进行比较,结果表明,文中算法具有运算速度快和鲁棒性强的特点.

关键词: 目标跟踪, 稀疏表示, 模板字典, 粒子滤波

Abstract:

As the current sparse representation tracking algorithms are of low real- time performance,this paper puts forward a tracking algorithm of the block sparse representation with background information.In the algorithm,first,candidate targets are selected through a fast algorithm in the framework of particle filtering.Then,images are divid-ed into blocks with different weights to reduce the disturbance of occlusions and noises.Finally,the background in-formation is fused into the template dictionary,and the sparse solution of the candidate targets is calculated through the collaborative representation of the targets and the background.The proposed algorithm is compared with the oth-er two algorithms by using four videos on the Matlab platform.The results show that the proposed algorithm is of a higher calculation speed and a stronger robustness.

Key words: object tracking, sparse representation, template dictionary, particle filtering

中图分类号: