华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (2): 65-70.doi: 10.3969/j.issn.1000-565X.2011.02.011

• 电子、通信与自动控制 • 上一篇    下一篇

基于EMD和SVD的虹膜特征提取及识别

罗忠亮 林土胜 杨军 赵晓芳   

  1. 华南理工大学电子与信息学院,广东广州510640
  • 收稿日期:2010-05-27 修回日期:2010-07-29 出版日期:2011-02-25 发布日期:2011-01-02
  • 通信作者: 罗忠亮(1973-),男,博士生,主要从事数字图像处理与生物特征识别研究 E-mail:luozl66@yahoo.com.cn
  • 作者简介:罗忠亮(1973-),男,博士生,主要从事数字图像处理与生物特征识别研究
  • 基金资助:

    国家自然科学基金资助项目(60472006,60972136);广州市科技计划项目(2009J1一C401)

Extraction and Recognition of Iris Features Based on Empirical Mode Decomposition and Singular Value Decomposition

Luo Zhong-liang  Lin Tu-sheng  Yang Jun  Zhao Xiao-fang   

  1. South China university of technology, electronic and information institute, guangdong guangzhou 510640
  • Received:2010-05-27 Revised:2010-07-29 Online:2011-02-25 Published:2011-01-02
  • Contact: 罗忠亮(1973-),男,博士生,主要从事数字图像处理与生物特征识别研究 E-mail:luozl66@yahoo.com.cn
  • About author:罗忠亮(1973-),男,博士生,主要从事数字图像处理与生物特征识别研究
  • Supported by:

    国家自然科学基金资助项目(60472006,60972136);广州市科技计划项目(2009J1一C401)

摘要: 为克服小波变换和Gabor滤波器提取虹膜特征时小波基函数固定和Gabor滤波器参数需优化选择的问题,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的虹膜特征提取方法.首先,对预处理后的虹膜图像进行EMD,将获得的一系列固有模态函数和残差分量构成初始矩阵;然后,对该矩阵进行SVD,以其奇异值作为虹膜特征向量;最后,利用ModestAdaBoost分类器进行识别.实验结果表明,该方法提取的特征向量维数少,识别率高,虹膜特征提取和匹配时间复杂度低.

关键词: 虹膜识别, 特征提取, 经验模式分解, 奇异值分解

Abstract:

During the extraction of iris features by the wavelet transform and Gabor filter,the wavelet basis function is fixed and Gabor filter parameters should be optimized.In order to solve these problems,a new extraction method of iris features is proposed based on the empirical mode decomposition(EMD) and the singular value decomposition(SVD).In this method,first,the preprocessed iris image is decomposed via EMD,and a series of intrinsic mode functions and residual components are obtained to construct the initial feature vector matrixes.Then,the matrixes are decomposed via SVD,and the corresponding singular value is taken as the iris feature vector.Finally,iris features are identified by using a Modest AdaBoost classifier.Experimental results show that the proposed method helps to obtain low-dimension feature vector with higher recognition rate and lower time complexity of feature extraction and matching.

Key words: iris recognition, feature extraction, empirical mode decomposition, singular value decomposition