华南理工大学学报(自然科学版) ›› 2011, Vol. 39 ›› Issue (12): 38-43.

• 电子、通信与自动控制 • 上一篇    下一篇

基于分数阶希尔伯特变换的罗音特征提取

李真真1 杜明辉2 吴效明1   

  1. 1.华南理工大学 生物科学与工程学院,广东 广州 510006; 2.华南理工大学 电子与信息学院,广东 广州 510640
  • 收稿日期:2011-05-24 修回日期:2011-06-30 出版日期:2011-12-25 发布日期:2011-11-04
  • 通信作者: 李真真(1982-) ,女,博士后,主要从事生物医学信号处理等的研究. E-mail:betty@scut.edu.cn
  • 作者简介:李真真(1982-) ,女,博士后,主要从事生物医学信号处理等的研究.
  • 基金资助:

    国家自然科学基金资助项目( 81070612)

Crackle Feature Extraction Based on Fractional Hilbert Transform

Li Zhen-zhenDu Ming-huiWu Xiao-ming1   

  1. 1. School of Biological Science and Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China; 2. School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2011-05-24 Revised:2011-06-30 Online:2011-12-25 Published:2011-11-04
  • Contact: 李真真(1982-) ,女,博士后,主要从事生物医学信号处理等的研究. E-mail:betty@scut.edu.cn
  • About author:李真真(1982-) ,女,博士后,主要从事生物医学信号处理等的研究.
  • Supported by:

    国家自然科学基金资助项目( 81070612)

摘要: 现有的罗音检测方法存在检测效果不理想、计算复杂度过高等不足,而分数阶希尔伯特变换对信号中的异常分量有着高度敏感性.文中在不同的分数阶将希尔伯特变换作用于罗音信号; 变换后的信号表现为逐步相移.后将原肺音信号与各阶变换结果构建相关函数,以各阶相关函数为待匹配特征,将其与标准模板相匹配,匹配系数高的判定为罗音,否则判为非罗音.仿真结果表明,罗音检测正确率达91. 2%,证实了该方法是有效的.

关键词: 信号处理, 信号检测, 计算机辅助诊断, 特征提取, 分数阶希尔伯特变换

Abstract:

As the existing methods to detect crackles are of non-ideal detection effects and complex computation,a new method taking the advantage of high sensitivity of fractional Hilbert transform to the abnormal components of signals is proposed. In this method,for different fractional values,Hilbert transforms are employed to transform crackle signals into the signals with stepped phase shifts. Then,functions describing the correlation between the original lung sound signals and the transformed ones are obtained with respect to different fractional orders,which are considered as the features to be matched with standard templates. The detected signals with high matching coefficients are judged as crackles,while those with low matching coefficients are judged as non-crackles. Simulated results indicate that the proposed method is effective and the detection accuracy is up to 91.2%.

Key words: signal processing, signal detection, computer-aided diagnosis, feature extraction, fractional Hilbert transform