华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (5): 68-72.

• 电子、通信与自动控制 • 上一篇    下一篇

反插值问题的幂激励前向神经网络求解

张雨浓1  曾燕2  钟童科1  唐志双3  莫鸿强4   

  1. 1. 中山大学 信息科学与技术学院, 广东 广州 510275; 2. 中山大学 数学与计算科学学院, 广东 广州 510275; 3. 中山大学 软件学院, 广东 广州 510275;4. 华南理工大学 自动化科学与工程学院, 广东 广州 510640
  • 收稿日期:2008-05-04 修回日期:2008-07-17 出版日期:2009-05-25 发布日期:2009-05-25
  • 通信作者: 张雨浓(1973-),男,博士,教授,博士生导师,主要从事神经网络和机器人研究. E-mail:zhynong@mail.sysu.edu.cn
  • 作者简介:张雨浓(1973-),男,博士,教授,博士生导师,主要从事神经网络和机器人研究.
  • 基金资助:

    国家自然科学基金资助项目(60643004,60775050);中山大学科研启动费、后备重点课题

Solution of Inverse-Interpolation Problem by Power-Excitation Feedforward Neural Networks

Zhang Yu-nong1  Zeng Yan2  Zhong Tong-ke Tang Zhi-shuang Mo Hong-qiang4   

  1. 1. School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China; 2. School of Mathematics and Computational Science, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China; 3. School of Software, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China; 4. School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2008-05-04 Revised:2008-07-17 Online:2009-05-25 Published:2009-05-25
  • Contact: 张雨浓(1973-),男,博士,教授,博士生导师,主要从事神经网络和机器人研究. E-mail:zhynong@mail.sysu.edu.cn
  • About author:张雨浓(1973-),男,博士,教授,博士生导师,主要从事神经网络和机器人研究.
  • Supported by:

    国家自然科学基金资助项目(60643004,60775050);中山大学科研启动费、后备重点课题

摘要: 针对数值法求解反插值问题时存在的正解精度受初值选取影响、计算速度慢等问题,采用幂激励前向神经网络来求解反插值问题.仿真结果表明,幂激励前向神经网络能够有效地解决一一映射反插值问题,而对于非一一映射,却不具备准确反插值的能力.为此,文中提出了一种增加时序控制条件的幂激励前向神经网络,即时序幂激励前向神经网络模型.理论推导和仿真实验结果表明,该时序幂激励神经网络能够更好地解决一一映射及非一一映射反插值问题.

关键词: 神经网络, 权值直接确定, 反插值, 时序

Abstract:

By using numerical algorithms to solve inverse-interpolation problems, the accuracy of positive solution is influenced by the choice of initial values, and the computational speed is slow. In order to solve the problems, a power-excitation feedforward neural network is employed to solve inverse-interpolation problems. As the adopted neural network is only suitable for the inverse-interpolation problem with one-to-one mapping but not for that with multiple-to-one mapping, the timing control condition is introduced into the neural network to construct a timing power-excitation feedforward neural network model. Theoretically derived and simulated results indicate that the constructed neural network effectively solve the inverse-interpolation problems with both one-to-one and multiple-to- one mappings.

Key words: neural network, direct weight determination, inverse interpolation, time sequence