华南理工大学学报(自然科学版) ›› 2009, Vol. 37 ›› Issue (5): 64-67.

• 电子、通信与自动控制 • 上一篇    下一篇

无量纲免疫检测器在缓变故障检测中的应用

岑健1  张清华2  胥布工高廷玉2   

  1. 1. 华南理工大学 自动化科学与工程学院, 广东 广州 510640; 2. 茂名学院 计算机与电子信息学院, 广东 茂名 525000
  • 收稿日期:2008-10-27 修回日期:2008-12-22 出版日期:2009-05-25 发布日期:2009-05-25
  • 通信作者: 岑健(1967-),女,在职博士生,广东技术师范学院副教授,主要从事智能故障诊断研究. E-mail:mmcjian@163.com
  • 作者简介:岑健(1967-),女,在职博士生,广东技术师范学院副教授,主要从事智能故障诊断研究.
  • 基金资助:

    广东省自然科学基金资助项目(8152500002000011,05011905);广东省科技计划项目(2006812401009)

Application of Nondimensional Immune Detector to Slowly-Varying Fault Detection

Cen Jian1  Zhang  Qing-hua2  Xu Bu-gong1  Gao Ting-yu2   

  1. 1 School of Automation Science and Engineering, South China University of Technology, Guangzhou 510640, Guangdong, 2. School of Electronic Information and Computer, Maoming University, Maoming 525000, Guangdong, China
  • Received:2008-10-27 Revised:2008-12-22 Online:2009-05-25 Published:2009-05-25
  • Contact: 岑健(1967-),女,在职博士生,广东技术师范学院副教授,主要从事智能故障诊断研究. E-mail:mmcjian@163.com
  • About author:岑健(1967-),女,在职博士生,广东技术师范学院副教授,主要从事智能故障诊断研究.
  • Supported by:

    广东省自然科学基金资助项目(8152500002000011,05011905);广东省科技计划项目(2006812401009)

摘要: 针对缓变故障难以检测的问题,提出一种基于无量纲免疫检测器的缓变故障检测方法.首先,将基于生物免疫原理和进化机制的免疫检测器生成算法与无量纲指标相结合,构造五种无量纲免疫检测器,为了使检测器能检测到微小的变化,对试验中提取的数据采用阴性选择算法和选择合适的编码位数进行编码;然后通过多个无量纲免疫检测器同时进行交叉检测,再进行集成、融合,从而能较全面获得故障信息;最后将离线训练后的免疫检测器进行在线故障检测.仿真实验结果和实际应用均表明,文中方法能有效地在线检测缓变故障.

关键词: 人工免疫, 故障检测, 无量纲指标, 免疫检测器, 缓变故障

Abstract:

As slowly-varying faults are difficult to detect, a detection method based on the nondimensional immune detector is proposed. In this method, first, a generation algorithm of immune detector based on biological immune principle and evolutionary mechanism is combined with the nondimensional parameters to construct five nondimen- sional immune detectors. Next, in order to detect small variations, the negative selection algorithm is adopted and a proper code length is selected to deal with the extracted data. Then, with the cross-detection using multiple non- dimensional immune detectors and with the integration and fusion of test data, comprehensive fault information is obtained. After an offline training, the multiple nondimensional immune detectors are finally used for the online de- tection of slowly-varying faults. Simulated results and practical application both indicate that the proposed method effectively detects slowly-varying faults on line

Key words: artificial immunity, fault detection, nondimensional parameter, immune detector, slowly-varying fault