华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (5): 145-150.

• 电子、通信与自动控制 • 上一篇    

智能健康住宅监护数据的分析方法

邹焱飚 谢存禧 林兆花   

  1. 华南理工大学 机械工程学院, 广东 广州 510640
  • 收稿日期:2007-03-23 修回日期:2007-05-06 出版日期:2008-05-25 发布日期:2008-05-25
  • 通信作者: 邹焱飚(1971-),男,讲师,博士,主要从事机器人理论及工程应用研究. E-mail:ybzou@scut.edu.cn
  • 作者简介:邹焱飚(1971-),男,讲师,博士,主要从事机器人理论及工程应用研究.
  • 基金资助:

    粤港关键领域重点突破项目(20054982304);广东省科技攻关项目(2004B10201010);华南理工大学自然科学基金资助项目(B01-E5050810)

Analytical Method of Monitoring Data for Health Smart Home

Zou Yan-biao  Xie Cun-xi  Lin Zhao-hua    

  1. School of Mechanical Engineering,South China University of Technology,Guangzhou 510640,Guangdong,China
  • Received:2007-03-23 Revised:2007-05-06 Online:2008-05-25 Published:2008-05-25
  • Contact: 邹焱飚(1971-),男,讲师,博士,主要从事机器人理论及工程应用研究. E-mail:ybzou@scut.edu.cn
  • About author:邹焱飚(1971-),男,讲师,博士,主要从事机器人理论及工程应用研究.
  • Supported by:

    粤港关键领域重点突破项目(20054982304);广东省科技攻关项目(2004B10201010);华南理工大学自然科学基金资助项目(B01-E5050810)

摘要: 智能健康住宅为缓解人口老龄化的压力和优化医疗资源配置提供了重要手段,其特点是在家庭环境下提供各项生命体征参数监测,并对监护数据自动分析处理.文中提出了以时序建模为基础的智能健康住宅监护数据分析方法.此方法由3个部分构成,包括模型辨识、模型更新以及基于模型的预报区间确定.模型阶数基于最终预报准则确定,使得模型能更好地符合观测数据.基于自适应滤波器算法的模型参数在线更新,能确保模型更好地描述监护数据的动态特性.根据建模结果,作前向30步预报,可确定预报区间.据此,可实现对监护数据中的平稳值、异常值以及状态变化3种特征模式的识别.通过应用PhysioNet中的3组数据集进行实验研究,发现文中方法的预报结果准确,能实现对智能健康住宅中连续监测数据的在线分析.

关键词: 智能健康住宅, 监护, 时序建模, 最终预报误差准则, 自适应滤波器

Abstract:

The health smart home(HSH) is an important measure to ease up the social pressure caused by the aging population and to optimize the allocation of medicine recourses.In an HSH,the vital parameters of a patient can be monitored and automatically analyzed at home.This paper presents an analytical method of monitoring data based on the time series modeling.Three modules of the proposed method,namely the model identification,the model adjustment and the prediction interval(PI) determination are discussed.In the proposed method,the model order is determined according to the final prediction error(FPE) criterion,thus ensuring the model to accord well with the monitoring data.The model parameters are adjusted on line,based on adaptive filter algorithms,thus facilitating the model to describe the dynamic features of monitoring data in a better way.The interval of 30-step-forward prediction is computed according to the modeling results,thus implementing the recognition of the characteristic patterns with stable data,outlier data and state change,respectively.Moreover,three datasets in PhysioNet biomedicine database are used to perform an experimental investigation.The results indicate that the proposed method can analyze the continuous monitoring data on line with high accuracy.

Key words: health smart home, monitoring, time series modeling, final prediction error criterion, adaptive filter