华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (4): 110-114,137.

• 计算机科学与技术 • 上一篇    下一篇

基于聚类中心分离的模糊聚类模型

武小红 周建江   

  1. 南京航空航天大学 信息科学与技术学院, 江苏 南京 210016
  • 收稿日期:2007-04-24 修回日期:2007-07-15 出版日期:2008-04-25 发布日期:2008-04-25
  • 通信作者: 武小红(1971-),男,博士生,主要从事模糊模式识别和图像处理方面的研究. E-mail:wxhong@nuaa.edu.cn
  • 作者简介:武小红(1971-),男,博士生,主要从事模糊模式识别和图像处理方面的研究.

Fuzzy Clustering Models Based on Cluster Center Separation

Wu Xiao-hong  Zhou Jian-jiang   

  1. College of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2007-04-24 Revised:2007-07-15 Online:2008-04-25 Published:2008-04-25
  • Contact: 武小红(1971-),男,博士生,主要从事模糊模式识别和图像处理方面的研究. E-mail:wxhong@nuaa.edu.cn
  • About author:武小红(1971-),男,博士生,主要从事模糊模式识别和图像处理方面的研究.

摘要: 根据聚类中心分离原则提出了三个新的模糊聚类模型.首先,在模糊C-均值(FCM)聚类目标函数的基础上按聚类中心分离原则增加一个聚类中心分离项来扩展FCM算法,提出基于聚类中心分离的模糊聚类模型(FCM_CCS).该模型可使聚类过程中聚类中心间的距离扩大,从而得到更好的聚类效果;其次,提出FCM_CCS的可能性聚类模型(PCM_CCS)以克服FCM_CCS对噪声敏感的缺点;最后,进一步将PCM_CCS扩展成它的可能性模糊聚类模型(PFCM_CCS).基于聚类中心分离的可能性模糊聚类模型在处理噪声数据和克服一致性聚类问题方面表现出良好的性能.对数据集的测试实验结果表明,PFCM_CCS能同时产生模糊隶属度和典型值,具有比FCM更大的聚类中心间距以及比FCM_CCS更高的聚类准确率.

关键词: 聚类中心分离, 模糊聚类, 模糊C-均值聚类, 聚类模型

Abstract:

In this paper, three novel fuzzy clustering models are proposed based on the principle of cluster center separation. In the investigation, first, a fuzzy clustering model named FCM CCS is proposed by adding a cluster center separation item to the objective function of fuzzy C-means (FCM) algorithm to extend FCM algorithm based on the principle of cluster center separation. FCM_CCS enlarges the distance between cluster centers during the clustering and results in a better clustering effect. Then, a possibilistic clustering model named PCM_CCS is pre- sented to overcome the noise sensitivity of FCM_CCS. Finally, PCM_CCS is extended to its possibilistic fuzzy clustering model named PFCM_CCS. PFCM_CCS is of good performance in dealing with noisy data and in overcoming co- incident clusters. The test results of data sets show that PFCM_CCS simultaneously produces fuzzy membership values and typicality values, and possesses larger cluster center distance than FCM and higher clustering accuracy than FCM_CCS.

Key words: cluster center separation, fuzzy clustering, fuzzy C-means clustering, clustering model