华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (3): 108-113.

• 土木建筑工程 • 上一篇    下一篇

工程模拟自学法在基坑开挖中的应用

潘健 陈红兵   

  1. 华南理工大学 土木与交通学院, 广东 广州 510640
  • 收稿日期:2007-03-14 修回日期:2007-07-08 出版日期:2008-03-25 发布日期:2008-03-25
  • 通信作者: 潘健(1963-),男,副教授,主要从事岩土工程的研究. E-mail:cvpan@suct.edu.cn
  • 作者简介:潘健(1963-),男,副教授,主要从事岩土工程的研究.

Application of Self-Learning Method for Engineering Simulation to Excavation of Foundation Pit

Pan Jian  Chen Hong-bing   

  1. School of Civil and Tragic Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China
  • Received:2007-03-14 Revised:2007-07-08 Online:2008-03-25 Published:2008-03-25
  • Contact: 潘健(1963-),男,副教授,主要从事岩土工程的研究. E-mail:cvpan@suct.edu.cn
  • About author:潘健(1963-),男,副教授,主要从事岩土工程的研究.

摘要: 在基坑开挖工程中,常规的数值模拟一般没有结合经验分析和场地观测数据来计算开挖变形.工程模拟自学法是一种基于神经网络的、可以综合有限元与人工智能的反分析技术.基坑开挖模拟过程分三步进行:(1)获取场地测量数据;(2)计算土体应力和测量土体变形;(3)利用获取的数据进行有限元分析,预测下一开挖阶段的变形情况.这样,它能充分发挥神经网络的自适应性、自组织性及学习、联想、容错及抗干扰能力,揭示出历史资料分析和场地测量数据中所蕴含的非线性关系.文中经模拟场地和三个历史场地数据计算分析,证明了工程模拟自学法模拟基坑开挖的可行性.

关键词: 基坑, 开挖, 自学法, 工程模拟, 本构模型, 数值模拟

Abstract:

The conventional numerical simulation applied to the excavation of foundation pit may result in inaccurate excavation deformation because it does not fully integrate the case history with the observed performance data. The self-learning method for engineering simulation is a neural network-based inverse analysis technique that combines the finite element analysis and the artificial intelligence. The excavation simulation process includes three steps : (1) obtaining the case observation data, (2) calculating the soil stress and measuring the soil deformation, and (3) performing the finite element analysis using the obtained data and predicting the deformation in the following excavation stage. This method possesses the self-adaptability and the self-organization, learning, association, fault tolerance and anti-interference abilities of neural network and can reveal the nonlinear correlation between the historical information and the field observed data. The application of the self-learning method to a simulated case and three historical cases indicates that the method is feasible in the excavation simulation of foundation pit.

Key words: foundation pit, excavation, self-learning method, engineering simulation, constitutive model, numeri-cal simulation