华南理工大学学报(自然科学版) ›› 2008, Vol. 36 ›› Issue (1): 99-104.
邓九英1 毛宗源1 罗英辉2
Deng Jiu-ying1 Mao Zong-yuan1 Luo Ying-hui2
摘要: 针对实际对象数学模型不明确而难以控制的问题,采用人工免疫网络的离散模型与学习算法,将人工免疫系统与神经网络结构的优势相结合,提出了一种基于人工免疫网络的模式识别算法,构造了对象识别的人工免疫网络模型.该算法综合了网络节点的定位与参数调整以及对基函数的平滑因子实施调谐等功能,有效地解决了径向基函数(RBF)神经网络模式识别的两个阶段任务,使模式识别的精度有较大的改进.采用两个不同对象函数进行的仿真试验表明,该算法具有快速收敛性与较高的准确性.