华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (5): 65-69.

• 计算机科学与技术 • 上一篇    下一篇

基于空间划分的海量数据K 邻近新算法

平雪良1 徐荣礼1 孔俊1 刘胜兰2   

  1. 1.江南大学 机械工程学院,江苏 无锡 214122; 2. 南京航空航天大学 机电学院,江苏 南京 210016
  • 收稿日期:2006-04-26 出版日期:2007-05-25 发布日期:2007-05-25
  • 通信作者: 平雪良(1962-),男,博士,教授,主要从事逆向工程与快速原型技术方面的研究. E-mail:ping@sytu.edu.cn
  • 作者简介:平雪良(1962-),男,博士,教授,主要从事逆向工程与快速原型技术方面的研究.
  • 基金资助:

    航空科学基金资助项目(03H52059)

Novel Algorithm for K-Nearest Neighbors of Massive Data Based 00 Spacial Partitioo

Ping Xue-lian1  Xu Rong-liKong lunLiu Sheng-lan2   

  1. 1. School of Mechanical Engineering , Southem Yangtze Univ. , Wuxi 214122 , Jiangsu , China;2. College of Mechanical and Electrical Engineering , Nanjing Univ. of Aeronautics and Astronautics , Nanjing 210016 , Jiangsu , China
  • Received:2006-04-26 Online:2007-05-25 Published:2007-05-25
  • Contact: 平雪良(1962-),男,博士,教授,主要从事逆向工程与快速原型技术方面的研究. E-mail:ping@sytu.edu.cn
  • About author:平雪良(1962-),男,博士,教授,主要从事逆向工程与快速原型技术方面的研究.
  • Supported by:

    航空科学基金资助项目(03H52059)

摘要: 逆向工程中,对测量数据的处理首先要建立数据点之间的拓朴结构,这通常通过计算点的K 邻近来实现.文中在分析现有算法的基础上,提出了一种新的基于空间划分的海量数据K 邻近算法.该算法综合考虑了点云密度、点云数量以及K 值对小立方体栅格边长的影响,通过确定合适的小立方体栅格边长以及排除不包含点云数据的小立方体栅格来确定邻近点最佳搜索范围,从而提高了搜索速度,保证了搜索结果的正确性.最后通过逆向软件的二次开发编程验证了算法.

关键词: 逆向工程, 海量数据, K 邻近, 邻近点搜索, 算法

Abstract:

In the reverse engineering , the first thing for processing the measured data is to build up the topology of the point cloud , which is generally implemented by calculating the K-nearest neighbors. In this paper , the existing algorithms of K-nearest neighbors are analyzed , and a new algorithm for K-nearest neighbors of massive data based on spacial partition is proposed. In the proposed algorithm , the effects of K value and point-cloud density and number on the side length of small sub-cubes are considered , and the most suitable searching range is obtained by finding the suitable side length of small sub-cubes and by excluding small sub-cubes without point cloud inside. Thereby , the searching speed is raised and the correctness of searched results is ensured. The proposed algorithm is finally verified by the second exploiting programming of reverse engineering software.

Key words: reverse engineering, massive data, K-nearest neighbor, neighbor point searching, algorithm