华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (2): 54-58.

• 交通运输工程 • 上一篇    下一篇

多机构控制下的拖曳体三维水动力响应分析

吴家鸣 熊小辉   

  1. 华南理工大学 交通学院,广东 广州 510640
  • 收稿日期:2005-12-01 出版日期:2007-02-25 发布日期:2007-02-25
  • 通信作者: 吴家鸣(1957-),男,博士,副教授,主要从事船舶与海洋工程水动力学研究。 E-mail:ctjmwu@scut. edu.cn
  • 作者简介:吴家鸣(1957-),男,博士,副教授,主要从事船舶与海洋工程水动力学研究。
  • 基金资助:

    国家自然科学基金资助项目(40276034)

3D Hydrodynamic Response Analysis of Underwater Towed Vehicle Under Joint Manipulations of MuItiple Controls

Wu lia-ming  Xiong Xiao-hui   

  1. School of Traffic and Communications , South China Univ. of Tech. , Guangzhou 510640 , Guangdong , China
  • Received:2005-12-01 Online:2007-02-25 Published:2007-02-25
  • Contact: 吴家鸣(1957-),男,博士,副教授,主要从事船舶与海洋工程水动力学研究。 E-mail:ctjmwu@scut. edu.cn
  • About author:吴家鸣(1957-),男,博士,副教授,主要从事船舶与海洋工程水动力学研究。
  • Supported by:

    国家自然科学基金资助项目(40276034)

摘要: 以一种自主稳定可控制水下拖曳体为研究对象,分析匀速拖曳时在迫沉水翼和双尾推进器联合作用下拖曳体的三维水动力响应特性.首先根据已有的羊控制机构(迫沉水翼或双尾推进器)作用下拖曳体的拖曳水池样机二维试验数据作为训练样本,采用LMBP 算法,建立起基于神经网络理论的自主稳定可控制水下拖曳体水动力数值模型,以此为工具分析在两种控制机构联合操纵下拖曳体的三维水动力特性.数值模拟结果表明:利用这一神经网络模型可以对拖曳体在多机构拉制动作下的三维水动力响应进行有效的数值仿真模拟。

关键词: 水下拖曳体, 联合控制, 水动力学, LMBP 算法, 神经网络

Abstract:

In this paper , a self-stable controllable underwater towed vehicle was taken as the research object , and the 3D hydrodynamic response perlormances of the vehicle with a constant velocity under the joint manipulations of a depressing wing and a twin-stern thruster were discussed. In the investigation , a numerical hydrodynamic model was established based on the LMBP algorithm of neural network theory. The experimental data for training the pro-posed model were provided from those of 2D vehicle prototype towing experiments conducted in a towing tank under the manipulation of single control mechanism such as a depressing wing or a twin-stern thruster , respectively. The 3 D hydrodynamic perlormances of the vehicle under the joint manipulations of the two above-mentioned control mechanisms were then analyzed based on the proposed model. The results of numerical simulation indicate that , by using the proposed model , the 3 D hydrodynamic perlo口nances of the towed vehicle under the joint manipulations of multiple controls can be effectively simulated.

Key words: underwater towed vehicle, joint manipulation, hydrodynamics, LMBP algorithm, neural network