华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (12): 97-101.

• 材料科学与技术 • 上一篇    下一篇

聚丙烯纤维对吸声性能的影响及其神经网络模拟

金雪莉 曾令可 李萍 侯来广   

  1. 华南理工大学 材料科学与工程学院,广东 广州 510640
  • 收稿日期:2006-11-16 出版日期:2007-12-25 发布日期:2007-12-25
  • 通信作者: 金雪莉(1979-) ,女,博士生,主要从事无机多孔材料、陶瓷废料的再利用等研究. E-mail:jinxl02414@126.com
  • 作者简介:金雪莉(1979-) ,女,博士生,主要从事无机多孔材料、陶瓷废料的再利用等研究.
  • 基金资助:

    佛山市科委产学研项目( 2005 B 1030 1026) ;广州市科委重点科技攻关项目(2002Z3-D0241 )

Effect of Polypropylene Fiber on Sound-Absorbing Property and Its Simulation by Neural Network

Jin Xue-li  Zeng Ling-ke  Li Ping  Hou Lai-guang   

  1. School of Materials Science and Engineer:ing , South China Univ. of Tech. , Guangzhou 510640 , Guangdong, China
  • Received:2006-11-16 Online:2007-12-25 Published:2007-12-25
  • Contact: 金雪莉(1979-) ,女,博士生,主要从事无机多孔材料、陶瓷废料的再利用等研究. E-mail:jinxl02414@126.com
  • About author:金雪莉(1979-) ,女,博士生,主要从事无机多孔材料、陶瓷废料的再利用等研究.
  • Supported by:

    佛山市科委产学研项目( 2005 B 1030 1026) ;广州市科委重点科技攻关项目(2002Z3-D0241 )

摘要: 以膨胀水泥、轻质陶粒、粉煤灰等为主要原料,掺加聚丙烯纤维,采用混凝土成型法成型,制备一种可适用于地铁特定环境下的环保型吸声材料.通过试验分析了聚丙烯纤维的长度、掺入量对材料吸声性能的影响.结果表明,掺入聚丙烯纤维能显著提高材料的吸声性能,尤其是高频吸声性能.利用Matlab 自行设计了BP 神经网络预测系统,以所用的聚丙烯纤维的长皮、掺入量、测试频率和实测的吸声系数来训练网络,建立材料体系输入一输出模式的非线性映射关系,并对已有试验数据进行预测,达到了满意的精度.

关键词: 吸声性能, 聚丙烯纤维, 机械强度, 神经网络, 模拟

Abstract:

A kind of environment-friendly sound-absorbing material was fabricated by means of concrete molding , with expended cement , light ceramisite , fly ash and polypropylene fiber as the raw materials. The effects of the fiber length and dosage on the sound-absorbing property were experimentally investigated , finding that the soundabsorbing property , especially that at a high frequency , improves significantly with the doping of polypropylene
fiber. Moreover , a prediction system based on back-propagation (BP) neural network was proposed by means of Matlab , which was further trained with the data of fiber length , fiber dosage , test frequency and practical absorption coefficient. Thus , an input-output nonlinear mapping relationship was presented for the fabricated material. The predicted results of the test data indicate that the proposed system is of high accuracy.

Key words: sound-absorbing property, polypropylene fiber, mechanical strength, neural network, simulation