华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (10): 26-36.

• 创刊五十周年纪念专辑 • 上一篇    下一篇

水平集方法及其在柔顺机构拓扑优化中的应用

张宪民 欧阳高飞   

  1. 华南理工大学 机械工程学院,广东 广州 510640
  • 收稿日期:2007-03-14 出版日期:2007-10-25 发布日期:2007-10-25
  • 通信作者: 张宪民(1964-) ,男,教授,博士生导师,主要从事精密装备现代控制技术,柔顺机构的分析与设计等研究. E-mail:zhangxm@scut. edu.cn
  • 作者简介:张宪民(1964-) ,男,教授,博士生导师,主要从事精密装备现代控制技术,柔顺机构的分析与设计等研究.
  • 基金资助:

    国家自然科学基金资助项目(50775073) ;粤港关键领域重点突破项目(东莞专项20061682) ;广东省、教育部产学研项目(2006D90304001) ;广东省自然科学基金资助项目(05006494 )

Level Set Method and Its Applications to Topology Optimization of Compliant Mechanisms

Zhang Xian-min  Ouyang Gao-fei   

  1. School of Mechanical Engineering , South China Univ. of Tech. , Guangzhou 510640 , Guangdong , China
  • Received:2007-03-14 Online:2007-10-25 Published:2007-10-25
  • Contact: Zhang Xian-min (bom in 1964) , male , professor, doctoral supervisor, mainly researches on precision equipmentand modem control technique , analysis and design ofcompliant mechanism systems. E-mail:zhangxm@scut. edu.cn
  • About author:Zhang Xian-min (bom in 1964) , male , professor, doctoral supervisor, mainly researches on precision equipmentand modem control technique , analysis and design ofcompliant mechanism systems.
  • Supported by:

    Supported by the National Natural ScienceFoundation of China (50775073) , the Guangdong-HongKong Technology Cooperation Funding (Dongguan Project20061682) , the Research Project of the Ministry of Educationand Guangdong Province (2006D90304001) and the GuangdongProvincial Natural Science Foundation (05006494)

摘要: 由于具有跟踪拓扑结构变化、优化边界清晰光滑等优点,水平集方法作为一种新颖的机构拓扑优化方法近来受到了重视.文中首先讨论了水平集方法中Hamilton -J acobi 方程的求解、水平集函数的重新初始化、速度场扩展等出现的问题.在此基础上,给出了应用逆风差分格式求解Hamilton-Jacobi 方程的数值方法,并采用改进的符号函数有效解决了数值的不稳定问题,提出的快速扫描法可以对速度场进行有效扩展.最后,建立了基于水平集方法的柔顺机构拓扑优化模型,利用水平集法对反位移柔顺机构进行了拓扑优化设计.

关键词: 水平集方法, 柔顺机构, 拓扑优化

Abstract:

The level set method has recently been proposed and studied as a novel structural topology optimizationmethod , which is flexible in handling complex topological changes and concise in describing the boundarγshape of the structure. In this paper , first , some numerical issues are discussed , such as the solution of Hamilton-Jacobi equations , the re-initialization of the level set function and the extension of velocity fields. Then ,several robust and effective numerical technologies , which are important to the implementation of the level setmethod , are proposed. For example , the upwind difference scheme is used to solve Hamilton-Jacobi equations ,the signature function is modified to ensure the numerical stability , and the fast scanning method is developed toconstruct extension velocities. Moreover , based on the level set method , a topology optimization model for compliantmechanisms is presented. Finally , the proposed level set method is illustrated by the topology optimizationof a displacement inverter.

Key words: level set method, compliant mechanism, topology optimization