华南理工大学学报(自然科学版) ›› 2007, Vol. 35 ›› Issue (10): 162-167.

• 创刊五十周年纪念专辑 • 上一篇    下一篇

过程神经元网络的理论研究与仿真

朱学峰 叶涛   

  1. 华南理工大学 自动化科学与工程学院,广东 广州 510640
  • 收稿日期:2007-03-01 出版日期:2007-10-25 发布日期:2007-10-25
  • 通信作者: 朱学峰(1940-) ,男,教授,博士生导师,主要从事过程先进控制策略、智能检测与智能控制、软测量技术等研究. E-mail:xfzhu@scut. edu.cn
  • 作者简介:朱学峰(1940-) ,男,教授,博士生导师,主要从事过程先进控制策略、智能检测与智能控制、软测量技术等研究.
  • 基金资助:

    国家自然科学基金资助项目(60274033 )

Theoretical Investigation and Simulation of Process Neural Networks

Zhu Xue -feng  Ye Tao   

  1. School of Automation Science and Engineering , South China Univ. ofTech. , Guangzhou 510640 , Guangdong , China
  • Received:2007-03-01 Online:2007-10-25 Published:2007-10-25
  • Contact: 朱学峰(1940-) ,男,教授,博士生导师,主要从事过程先进控制策略、智能检测与智能控制、软测量技术等研究. E-mail:xfzhu@scut. edu.cn
  • About author:朱学峰(1940-) ,男,教授,博士生导师,主要从事过程先进控制策略、智能检测与智能控制、软测量技术等研究.
  • Supported by:

    国家自然科学基金资助项目(60274033 )

摘要: 过程神经元网络是一种适合于处理过程式信号输入的网络,其基本单元是过程神经元——一种新的神经元模型.过程神经元和传统神经元既存在本质区别,又有着紧密的联系,前者可用后者以任意精度无限逼近.文中首先介绍了过程神经元及其网络模型;然后,给出了过程神经元的两个逼近定理及其证明——时域特征扩展模型和正交分解特征扩展模型.基于第二个定理,给出了数值输出型过程神经网络的相关推论.针对模拟信号的仿真实验表明,过程神经网络对白噪声具有很好的抑制作用.最后,针对过程神经网络面临的主要问题进行讨论,指出了一些具有前景的研究方向.

关键词: 人工神经网络, 过程神经元, 仿真, 函数正交基, 傅立叶级数, 特征扩展

Abstract:

The process neural networks (PNNs) are networks that adapt to the process of signal input , whose elementary unit is the process neuron (PN) , an emerging neuron model. Both essential difference and close correlation exist between the process neuron and the traditional neurons , for example , PN can be approximated by traditional neurons with arbitrarγpreclslOn. In this paper , the PN model and some PNNs are introduced. Then , two PN
approximating theorems are presented and proved in detail. Each theorem gives an approximating model to the PN model , i. e. , the time-domain feature expansion model and the orthogonal decomposition feature expansion model. Moreover , a corollarγis given for the real-valued output PNN based on the second theorem. Mterwards , a simulation of analog signals is carried out , showing that the PNN can well suppress the white noises contained in signals. Finally , some problems about PNNs are discussed and further research orientations are suggested.

Key words: artificial neural network, process neuron, simulation, function orthogonal basis, Fourier series, feature expanslOn