华南理工大学学报(自然科学版) ›› 2006, Vol. 34 ›› Issue (3): 6-9.

• 化学化工、能源 • 上一篇    下一篇

低温储能材料的制备及其影响因素

吴会军1 朱冬生1 王盛卫2 王春华1   

  1. 1. 华南理工大学 传热强化与过程节能教育部重点实验室,  广东 广州  510640;2. 香港理工大学 屋宇设备工程学系, 香港
  • 收稿日期:2005-01-21 出版日期:2006-03-25 发布日期:2006-03-25
  • 通信作者: 吴会军(1978-) , 男, 博士, 主要从事传热与节能、储能材料的研究. E-mail:wuhuijun@ tsinghua. org. cn
  • 作者简介:吴会军(1978-) , 男, 博士, 主要从事传热与节能、储能材料的研究.
  • 基金资助:

    国家自然科学基金资助项目( 20346001); 广东省自然科学基金资金项目( 011584); 教育部优秀青年教师资助计划项目; 高等学校博士学科点专项科研基金资助项目

Preparation and Influence Factors of Low-GradeTherma-l Energy StorageMaterial

Wu Hui-junZhu Dong-shengWang Sheng-weiWang Chun-hua1   

  1. 1. Key Laboratory of Enhanced Heat Transfer and Energy Conserv ation, theM in istry of Education,South China Univ. of Tech. , Guang zhou 510640, Guangdong, China;2. Dept. o f Building Services Engineering, The Hong Kong Polytechnic Univ. , Hong Kong
  • Received:2005-01-21 Online:2006-03-25 Published:2006-03-25
  • Contact: 吴会军(1978-) , 男, 博士, 主要从事传热与节能、储能材料的研究. E-mail:wuhuijun@ tsinghua. org. cn
  • About author:吴会军(1978-) , 男, 博士, 主要从事传热与节能、储能材料的研究.
  • Supported by:

    国家自然科学基金资助项目( 20346001); 广东省自然科学基金资金项目( 011584); 教育部优秀青年教师资助计划项目; 高等学校博士学科点专项科研基金资助项目

摘要: 采用液相浸泡法, 将吸湿性无机盐CaCl2 与硅胶复合, 制备出低温复合储能材料. 对硅胶和复合储能材料的吸湿性能进行了对比实验, 并利用吸附储能实验装置测试了它们的储能性能, 研究了影响复合储能材料性能的因素. 结果表明: 较为合适的浸泡时间为4h; 提高CaCl2 含量和浸泡温度有利于复合储能材料吸湿量和质量热力学能(储能密度)的提高; 随着吸湿能力的增强, 复合储能材料的质量热力学能增大, 可达1050 J/g; 同时, 该复合储能材料可在90℃温度下有效再生, 适用于太阳能、工业废热等低温热的储存和利用.

关键词: 复合吸附材料, 储能, 制备, 低温热

Abstract:

A composite low-grade thermal-energy storage sorbentw as first prepared by impregnating hygroscopic salt CaCl2 into silica gel. Nex ,the water adsorbing properties of the prepared so rbent and pure silica gel were measured and compared. Then, the corresponding thermal-energy storage properties were investigated in a sorption setup.Finally, the factors affecting the adsorbing properties of the composite so rbent were studied. Experimental resultsshow a proper impregnation period of 4h and an increase in water adsorption and specific thermal-energy storage density with the increases of CaCl2 content and impregnation temperature. It is also indicated that the specific thermal-energy storage density of the composite sorbent increases up to 1050 J /g with the amount of adsorbed water,and that the composite sorbent can be effectively regenerated at 90℃. Therefore, the composite sorbent is feasibleto store and utilize the low-grade thermal energy, such as solar energy and industrial-waste heat.

Key words: composite sorben, tenergy storage, preparation, low-grade heat