华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (8): 58-61.

• • 上一篇    下一篇

基于核向量空间模型的专利分类

丁月华 文贵华 郭炜强   

  1. 华南理工大学 计算机应用工程研究所,广东 广州 510640
  • 收稿日期:2004-10-19 出版日期:2005-08-25 发布日期:2005-08-25
  • 通信作者: 丁月华(1950-),男,高工,主要从事人工智能研究 E-mail:crwqguo@scut.edu.cn
  • 作者简介:丁月华(1950-),男,高工,主要从事人工智能研究
  • 基金资助:

    国家自然科学基金资助项目(60003019)和华南理工大学高水平大学建设项目(159-D65010)

Patent Categorization Based on Kernel Vector Space Model

Ding Yue-hua  Wen Gui-hua  Guo Wei-qiang   

  1. Research Institute of Computer Applications,South China Univ.of Tech.,Guangzhou 510640,Guangdong,China
  • Received:2004-10-19 Online:2005-08-25 Published:2005-08-25
  • Contact: 丁月华(1950-),男,高工,主要从事人工智能研究 E-mail:crwqguo@scut.edu.cn
  • About author:丁月华(1950-),男,高工,主要从事人工智能研究
  • Supported by:

    国家自然科学基金资助项目(60003019)和华南理工大学高水平大学建设项目(159-D65010)

摘要: 提出了一种利用核函数改进向量空间的新模型:核向量空间模型,该模型利用Mercer核。把输入空间的样本映射到高维特征空间,在高维特征空间中按向量空间模型操作。然后用核向量空间模型实现专利分类.理论分析及在专利分类中的实验表明,所提出的模型比经典向量空间模型有更高的正确分类率,

关键词: 文本分类, 向量空间模型, 核函数

Abstract:

A novel model,namely,kernel vector space model,is established by using the kernel function to im-prove the vector space.In this model,the Mercer kernel is used to map the data in the original space to a high-di-mensional feature space in which data can be identified as in the vector space. The proposed model is then applied to the patent categorization,with the theoretical and experimental results indicating its greater correctness than the traditional vector space model.

Key words: text categorization, vector space model, kernel function