华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (5): 32-37.

• • 上一篇    下一篇

逆向工程中基于密集数据点的轮廓线重建技术

谭昌柏 周来水 安鲁陵 彭雨哟   

  1. 南京航空航天大学 机电学院,江苏 南京 210016
  • 收稿日期:2004-06-11 出版日期:2005-05-25 发布日期:2005-05-25
  • 通信作者: 谭昌柏(1978-),男,博士生,主要从事计算机辅助设计与制造、逆向工程方面的研究 E-mail:tcbnuaa@163.com
  • 作者简介:谭昌柏(1978-),男,博士生,主要从事计算机辅助设计与制造、逆向工程方面的研究
  • 基金资助:

    高等学校优秀青年教师教学科研奖励计划资助项目;江苏省青年科技基金资助项目(BQ2000004);航空基金资助项目(01H52051)

Profile Reconstruction Based on Dense Data Points in Reverse Engineering

Tan Chang-bai  Zhou Lai-shui  An Lu-ling  Peng Yu-yo   

  1. College of Mechanical and Electrical Engineering, Nanjing Univ. ofAeronautics &Astronautics, Nanjing 210016, Jiangsu, China
  • Received:2004-06-11 Online:2005-05-25 Published:2005-05-25
  • Contact: 谭昌柏(1978-),男,博士生,主要从事计算机辅助设计与制造、逆向工程方面的研究 E-mail:tcbnuaa@163.com
  • About author:谭昌柏(1978-),男,博士生,主要从事计算机辅助设计与制造、逆向工程方面的研究
  • Supported by:

    高等学校优秀青年教师教学科研奖励计划资助项目;江苏省青年科技基金资助项目(BQ2000004);航空基金资助项目(01H52051)

摘要: 重构凸台、型腔、拉伸面、回转面这类特征的关键是重建描述其外形的平面轮廓线.由于测量数据点具有密集、无序的特点,确定轮廓草图平面后,不能直接对数据点进行参数化和样条线拟合.文中对基于密集数据点的轮廓线的重建技术进行了探讨,提出了首先在草图平面上提取轮廓线的“粗边界”点,然后对数据点进行细化和参数化,最后实现B样条表示的轮廓线重建方法.实例结果表明,文中方法有效地解决了此类特征轮廓线的重建问题.

关键词: 逆向工程, 轮廓线重建, 边界提取, 数据点细化

Abstract:

The reconstruction of such features as protrusion, pocket, extrusion and revolution depends on the re-construction the section profiles describing the feature shapes. As being dense and out-of-order, the collected data points cannot be directly parameterized and fitted by sp ine curve after the profile sketch p lane is determined. This paper addresses the p rofile reconstruction based on dense data points. In addition, a novel app roach is proposed. By this app roach, the“thick boundary”of the section p rofile is firstly extracted in the p rofile sketch p lane, and the obtained data points are then thinned and parameterized, thus imp lementing the reconstruction of the section profilerep resented by the B-spline. Experimental results prove that the proposed method can effectively reconstruct the profileswith the above-mentioned features.

Key words: reverse engineering, profile reconstruction, boundary extraction, data point thinning