华南理工大学学报(自然科学版) ›› 2005, Vol. 33 ›› Issue (10): 103-107.
• • 上一篇 下一篇
何春雄 陈树敏 姚仰新
收稿日期:
出版日期:
发布日期:
通信作者:
作者简介:
基金资助:
国家自然科学基金资助项目(10171032)
He Chun-xiong Chen Shu-min Yao Yang-xin
Received:
Online:
Published:
Contact:
About author:
Supported by:
摘要: 研究了加权Sobolev空间上拟线性次椭圆偏微分方程解的存在性,这里方程的非线性项是奇的.在较弱的条件下,证明方程所对应的泛函满足Cerami条件,进而应用Bartsch的喷泉定理,得到了方程无穷多个大能量解的存在性.
关键词: Heisenberg群, 拟线性, 次椭圆方程, Cerami条件, 喷泉定理, 加权Sobolev空间
Abstract:
The existence for the solutions to the quasilinear subelliptic partial differential equations in a weighted Sobolev space is investigated in the condition that the nonlinear term is odd. Under comparably weaker conditions,the corresponding functional is proved to satisfy the Cerami condition. Moreover,by using the Fountain theorem of Bartsch,the existence of infinitely many solutions with large energy for the equations are obtained.
Key words: Heisenberg group, quasilinearity, subelliptic equation, Cerami condition, Fountain theorem, weigh-ted Sobolev space
何春雄 陈树敏 姚仰新. Heisenberg群上拟线性次椭圆方程无穷多解的存在性[J]. 华南理工大学学报(自然科学版), 2005, 33(10): 103-107.
He Chun-xiong Chen Shu-min Yao Yang-xin. Existence of Infinitely Many Solutions to the Quasilinear Subelliptic Equations on Heisenberg Group[J]. Journal of South China University of Technology (Natural Science Edition), 2005, 33(10): 103-107.
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://zrb.bjb.scut.edu.cn/CN/
https://zrb.bjb.scut.edu.cn/CN/Y2005/V33/I10/103