华南理工大学学报(自然科学版) ›› 2004, Vol. 32 ›› Issue (2): 46-49.

• • 上一篇    下一篇

基于BP神经网络的车辆定位融合模型

胡郁葱 徐建闽 吴一民 钟慧玲   

  1. 华南理工大学 交通学院‚广东 广州510640
  • 收稿日期:2003-05-16 出版日期:2004-02-20 发布日期:2015-09-07
  • 通信作者: 胡郁葱(1970-)‚女‚讲师‚博士‚主要从事智能交通系统理论与应用研究。 E-mail:hycscut@163.com
  • 作者简介:胡郁葱(1970-)‚女‚讲师‚博士‚主要从事智能交通系统理论与应用研究。
  • 基金资助:
     国家自然科学基金资助项目(69974016)

Fusion Model of Vehicle Positioning Based on BP Neural Network

Hu Yu-cong Xu Jian-min Wu Yi-min Zhong Hui-ling   

  1. College of Traffic and Communications‚South China Univ.of Tech.‚Guangzhou510640‚Guangdong‚China
  • Received:2003-05-16 Online:2004-02-20 Published:2015-09-07
  • Contact: 胡郁葱(1970-)‚女‚讲师‚博士‚主要从事智能交通系统理论与应用研究。 E-mail:hycscut@163.com
  • About author:胡郁葱(1970-)‚女‚讲师‚博士‚主要从事智能交通系统理论与应用研究。

摘要:  针对常规的 GPS 定位方法在大城市中容易丢失信号的问题‚提出采用 GPS 与基于移动通信网络的定位技术(MPS)相结合的思路‚利用反向传播(BP)神经网络构造 GPS与 MPS 定位信息的融合模型‚并采用动量法和学习率自适应调整的策略来解决 BP 算法收敛速度慢和局部极小点的问题.用126条调查数据对神经网络进行训练的结果表明‚该模型结果在定位的方向和趋势上基本与 GPS 定位结果一致‚且不依赖于原有模型‚因而可有效运用于在较低成本下保持车辆的定位连续性和定位精度.

关键词: 智能交通系统, 车辆定位, 神经网络, 融合模型

Abstract:  Signals are prone to be lost in big cities when using traditional GPS.To solve this problem‚a concept which combines GPS and mobile-communication-network-based MPS was adopted‚and the BP neural network was used‚thus constructing a vehicle positioning fusion model of GPS and MPS positioning information.By utilizing the momentum method as well as the self-adaptive adjusting strategy of learning rate‚the slow convergence speed of BP algorithm and the local minimal point were solved.
Training results with126items of research data on the network indicate that the model is consistent with GPS both in direction and in trend and is independent upon the traditional GPS model.So the model can efficiently be applied in maintaining the positioning continuity and precision with lower cost.

Key words: intelligent transportation system, vehicle positioning, neural network, fusion model

中图分类号: