华南理工大学学报(自然科学版) ›› 2014, Vol. 42 ›› Issue (3): 84-89,124.doi: 10.3969/j.issn.1000-565X.2014.03.014

• 机械工程 • 上一篇    下一篇

基于数值模拟的铸钢基体堆焊锻模焊层厚度优化

卢顺 周杰 曾强   

  1. 重庆大学 材料科学与工程学院, 重庆 400044
  • 收稿日期:2013-09-10 修回日期:2013-12-23 出版日期:2014-03-25 发布日期:2014-02-19
  • 通信作者: 卢顺(1977-),男,博士,主要从事模具的制造与再制造研究. E-mail:lulu_ls@163.com
  • 作者简介:卢顺(1977-),男,博士,主要从事模具的制造与再制造研究.
  • 基金资助:

    国家自然科学基金面上项目(51275543);科技部重大专项(2012ZX04010-081)

Numerical Simulation- Based Optimization of Welding Thickness of Forging Die Manufactured by Steel Casting Surfacing

Lu Shun Zhou Jie Zeng Qiang   

  1. College of Materials Science and Engineering,Chongqing University,Chongqing 400044,China
  • Received:2013-09-10 Revised:2013-12-23 Online:2014-03-25 Published:2014-02-19
  • Contact: 卢顺(1977-),男,博士,主要从事模具的制造与再制造研究. E-mail:lulu_ls@163.com
  • About author:卢顺(1977-),男,博士,主要从事模具的制造与再制造研究.
  • Supported by:

    国家自然科学基金面上项目(51275543);科技部重大专项(2012ZX04010-081)

摘要: 为解决目前模具制造业中遇到的高成本、低寿命等问题,文中提出了一种基于铸钢基体的表面堆焊制备锻模的方法.针对其中焊接厚度的控制难题,将试验验证与计算机有限元数值分析相结合,建立了基于 ZG310- 570 基体表面堆焊模具的有限元简化模型,采用热循环曲线法模拟铸钢基体模具表面堆焊及回火去应力过程,并分析温度场和不同焊接层厚度的残余应力场分布.结果表明:有限元数值分析能较好地模拟实际铸钢基体表面堆焊锻模的制备过程;基体近焊缝位置等效应力随焊接厚度的增加而降低,到焊层厚度为15mm 后趋于平稳;远离焊缝位置的残余应力随焊接厚度增加而逐渐升高,焊道对基体部位的影响也随之增大,使得铸钢基体材料在使用过程中出现缺陷的可能性显著增加.综合考虑焊接厚度对铸钢基体的影响及模具制造成本等因素,认定该工艺条件下铸钢基体表面堆焊层的最优厚度为15mm.

关键词: 铸钢, 焊接厚度, 焊接应力, 数值模拟

Abstract:

In order to solve the problems of high cost and short life span in current die manufacturing,a method tomanufacture forging die via steel casting surfacing is proposed.In view of the control of welding thickness,withthermal cycle curve method,the welding and tempering process is simulated on a simplified finite element model ofthe ZG310- 570 surfacing die by means of finite element analysis and experimental verification,and the temperaturefield and the residual stress field varying with welding thickness are analyzed.The results show that (1) finite ele-ment analysis is effective in simulating the manufacturing process of forging die; (2) the equivalent stress near thewelding joint decreases as the welding thickness increases until the latter reaches 15 mm; (3) the residual stressfar away from the welding joint increases with the welding thickness,and the impact of weld bead on the substratesubsequently strengthens,and thus the possibility of defect of steel casting material in use increases significantly.When we take into account such factors as the influence of welding thickness on cast- steel substrate and the manu-facturing cost,15 mm should be regarded as the optimal welding thickness of the surface layer of steel casting.

Key words: steel casting, welding thickness, welding stress, numerical simulation