华南理工大学学报(自然科学版) ›› 2026, Vol. 54 ›› Issue (1): 116-123.doi: 10.12141/j.issn.1000-565X.250124

• 机械工程 • 上一篇    下一篇

基于颗粒阻尼器的电梯曳引机制动降噪研究

陈忠1  刘琦1  吴红兵2  肖佳锋2  徐杨2  詹晓宇2  申爽2   

  1. 1.华南理工大学 机械与汽车工程学院,广东 广州 510640;

    2.日立电梯电机(广州)有限公司,广东 广州 510660

  • 出版日期:2026-01-25 发布日期:2025-07-11

Research on Brake Noise Reduction of Elevator Traction Machine Based on Particle Dampers

CHEN Zhong1  LIU Qi1  WU Hongbing2  XIAO Jiafeng2  XU Yang2  ZHAN Xiaoyu2  SHEN Shuang2   

  1. 1.School of Mechanical and Automotive Engineering, South China Univ. of Tech., Guangzhou 510640, Guangdong, China;

    2. Hitachi Elevator Motor (Guangzhou) Co., Guangzhou 510660, Guangdong, China

  • Online:2026-01-25 Published:2025-07-11

摘要:

电梯曳引机在制动动作过程中会产生较高声压级噪声,本研究提出基于粒子阻尼器的减振降噪解决方案。首先通过有限元仿真模态分析对制动轮及刹车片进行振动特性研究,并结合整机振动噪声测试结果得到的重点振动频率,确定关键振动模态。在此基础上,结合制动轮结构的对称性和空间布局特点,创新性地在制动轮内部设计可安装粒子阻尼器的空腔结构。研究采用EDEM-ADAMS联合仿真技术对固体颗粒参数进行优化,重点解决三个关键技术问题:1. 粒子材料选择需规避磁场干扰,最终选用纯铝作为阻尼颗粒;2. 通过离散元分析对粒子阻尼器在空腔结构内的能量耗散过程进行仿真;3. 结合多体动力学仿真优化阻尼器的粒子半径和填充率参数。实验验证阶段在半消声室环境下进行,设置5秒周期的定时制动控制策略,采用三轴传感器阵列采集振动信号,同步记录声压级数据。测试结果表明,安装粒子阻尼器后曳引机制动过程平均声压级降低20.7%,验证了该方案的有效性。本研究为电磁制动系统噪声控制提供了新的技术路径,具有显著的工程应用价值。

关键词: 电梯曳引机, 颗粒阻尼器, 有限元分析, 离散元分析, 振动与噪声

Abstract:

Elevator traction machines generate high sound pressure level noise during the braking process. This study proposes a vibration and noise reduction solution based on particle dampers. Firstly, the vibration characteristics of the brake wheel and brake pads are investigated through finite element analysis. Key vibration modes are identified by correlating the principal vibration frequencies obtained from whole-machine vibration and noise tests. Based on these findings, and considering the symmetry and spatial layout of the brake wheel structure, an innovative cavity design is introduced within the brake wheel to accommodate particle dampers. The study employs coupled EDEM-ADAMS simulation technology to optimize the parameters of the solid particles, with a focus on addressing three critical technical issues: (1) To avoid interference from magnetic fields, pure aluminum is ultimately selected as the damping particle material; (2) The energy dissipation process of the particle damper within the cavity is simulated using discrete element analysis; (3) The particle radius and filling ratio of the damper are optimized by integrating multi-body dynamics simulations. Experimental validation is conducted in a semi-anechoic chamber, where a timed braking control strategy with a 5-second cycle is implemented. A triaxial sensor array is used to collect vibration signals, while sound pressure level data are recorded synchronously. The test results indicate that, following the installation of particle dampers, the average sound pressure level during the braking process of the traction machine is reduced by 20.7%, thereby confirming the effectiveness of the proposed solution. This research provides a novel technical approach for noise control in electromagnetic braking systems and demonstrates significant engineering application value.

Key words: elevator traction machine, particle damper, finite element analysis, discrete element analysis, vibration and noise