华南理工大学学报(自然科学版) ›› 2025, Vol. 53 ›› Issue (8): 50-60.doi: 10.12141/j.issn.1000-565X.240437

• 智慧交通系统 • 上一篇    下一篇

基于exiD轨迹数据的高速公路合流区汇入特性与安全性研究

温惠英1  黄坤火1  陈喆2  赵胜1  胡宇晴2  黄俊达1   

  1. 1. 华南理工大学 土木与交通学院, 广东 广州 510640;

    2. 广东联合电子服务股份有限公司, 广东 广州510620


  • 出版日期:2025-08-25 发布日期:2025-01-17

Study on Merging Characteristics and Safety of Freeway Confluence Zones Based on exiD Trajectory Data

WEN Huiying1  HUANG Kunhuo1  CHEN Zhe2  ZHAO Sheng1  HU Yuqing2  HUANG Junda1   

  1. 1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, Guangdong, China;

    2. Guangdong E-Serve United Co., Ltd., Guangzhou 510620, Guangdong, China

  • Online:2025-08-25 Published:2025-01-17

摘要:

高速公路合流区的车辆换道频繁、驾驶环境复杂、交通冲突严重,是交通事故的多发区域。基于德国exiD车辆轨迹数据,本文对高速公路合流区车辆汇入模式进行划分,并结合碰撞时间TTC(Time-to-Collision)理论,提出汇入风险表征指标体系评估车辆在汇入时刻风险与汇入过程风险。基于XGBoost、LightGBM和GBDT等机器学习模型构建高速公路合流区车辆汇入风险判别模型,并结合SHAP理论对高速公路合流区车辆汇入风险致因进行分析。实验结果表明,高速公路合流区的汇入风险判别模型的总体准确率达95.52%,其准确率、精确率、召回率和F1-score方面均优于随机森林、LightGBM和GBDT模型。模型对比结果表明:考虑了汇入持续时间和汇入紧迫度的风险识别模型准确率更高;合流区车辆汇入风险和汇入车与前车速度差平均值、汇入持续时间、与前车速度差最大值等因素关系密切。

关键词: 交通安全, 高速公路合流区, 交通冲突, 风险识别, 机器学习

Abstract:

The freeway merging area is a high-risk zone for traffic accidents due to frequent lane changes, complex driving conditions, and significant traffic conflicts. Based on the German exiD vehicle trajectory data, this study categorizes vehicle merging patterns in freeway merging zones and proposes a risk characterization index system, using the Time-to-Collision (TTC) theory to evaluate the risk at the moment of merging and throughout the merging process. Merging risk prediction models are developed using machine learning techniques, including XGBoost, LightGBM, and GBDT. Additionally, the SHAP theory is applied to analyze the causal factors contributing to merging risks in freeway merging areas. Experimental results show that the proposed merging risk prediction model achieves an overall accuracy of 95.52%, outperforming models such as Random Forest, LightGBM, and GBDT in terms of accuracy, precision, recall, and F1-score. The model comparison results indicate that risk recognition models incorporating factors like merging duration and urgency achieve higher accuracy. Furthermore, the merging risk in the freeway merging area is closely related to factors such as the average speed difference between the merging vehicle and the preceding vehicle, merging duration, and the maximum speed difference with the preceding vehicle.


Key words: traffic safety, freeway merging areas, traffic conflicts, risk identification, machine learning