华南理工大学学报(自然科学版) ›› 2024, Vol. 52 ›› Issue (5): 52-61.doi: 10.12141/j.issn.1000-565X.230215

• 交通运输工程 • 上一篇    下一篇

带有状态/输入量化的无人船自适应模糊跟踪控制

宁君1(), 马一帆1, 李伟1(), 李铁山2, 陈俊龙3, 岳兴旺1   

  1. 1.大连海事大学 航海学院, 辽宁 大连 116026
    2.电子科技大学 自动化工程学院, 四川 成都 611730
    3.华南理工大学 计算机科学与工程学院, 广东 广州 510006
  • 收稿日期:2023-10-10 出版日期:2024-05-25 发布日期:2023-10-27
  • 通信作者: 李伟(1968-),男,博士,教授,主要从事船舶安全评估、船舶运动控制研究。 E-mail:li_wei@dlmu.edu.cn
  • 作者简介:宁君(1988-),男,博士生,讲师,主要从事船舶运动控制、量化控制研究。E-mail:junning@dlmu.edu.cn
  • 基金资助:
    国家自然科学基金重点项目(51939001);国家自然科学基金资助项目(61976033);国家自然科学基金青年基金资助项目(61803064);辽宁省自然科学基金资助项目(20170540098);大连海事大学中央高校基本科研业务费专项资金资助项目(3132023135)

Adaptive Fuzzy Tracking Control of Unmanned Surface Vehicle with State and Input Quantization

NING Jun1(), MA Yifan1, LI Wei1(), LI Tieshan2, CHEN Junlong3, YUE Xingwang1   

  1. 1.Navigation College,Dalian Maritime University,Dalian 116026,Liaoning,China
    2.School of Automation Engineering,University of Electronic Science and Technology of China,Chengdu 611730,Sichuan,China
    3.School of Computer Science & Engineering,South China University of Technology,Guangzhou 510006,Guangdong,China
  • Received:2023-10-10 Online:2024-05-25 Published:2023-10-27
  • Contact: 李伟(1968-),男,博士,教授,主要从事船舶安全评估、船舶运动控制研究。 E-mail:li_wei@dlmu.edu.cn
  • About author:宁君(1988-),男,博士生,讲师,主要从事船舶运动控制、量化控制研究。E-mail:junning@dlmu.edu.cn
  • Supported by:
    the Key Program of National Natural Science Foundation of China(51939001);the National Natural Science Foundation of China(61976033);the China Youth Fund Project of National Natural Science Foundation of China(61803064);the Natural Science Foundation of Liaoning Province(20170540098)

摘要:

针对海上通讯带宽受限情况下无人船的航迹跟踪控制问题,设计了一种带有状态量化和输入量化的自适应反馈跟踪控制方案。在保证有效跟踪的同时,减少执行器执行频次,降低控制幅度。首先,在不考虑量化情况下基于自适应反步法设计了系统跟踪控制律,并结合动态面技术有效降低了虚拟控制律的计算量膨胀问题。对于控制系统中存在的不确定项,利用模糊逻辑系统进行逼近。其次,采用均匀量化器分别对控制系统中的状态变量和输入变量进行量化,且量化后的状态反馈信息被用于无人船航迹跟踪控制器的设计。根据所得到的量化信息,给出了同时考虑状态量化和输入量化的无人船航迹跟踪控制律。在稳定性分析中,通过Lyapunov稳定性理论证明了在不考虑量化的情况下闭环控制系统的稳定性,并根据递归的方法证明了闭环控制系统中量化变量和非量化变量之间误差的有界性。基于给定的引理,最终证明了在同时考虑状态量化和输入量化的情况下,所设计的带有状态量化和输入量化的模糊自适应反馈跟踪控制系统的稳定性。最后,通过两组仿真实验验证了所提方案的实用性。即在同时考虑状态量化和输入量化的情况下,无人船仍能保持对理想轨迹良好的跟踪性能,并有效减轻了执行器的执行频次,更符合航海工程实践。

关键词: 无人船, 航迹跟踪, 状态量化及输入量化, 模糊自适应控制, 量化误差

Abstract:

An adaptive feedback tracking control scheme with state and input quantization was designed for the track tracking control problem of unmanned unmanned surface vehicle under the restricted communication bandwidth at sea. While ensuring effective tracking, it reduces the burden of maritime communication signal transmission, decreases the actuator execution frequency and reduces the control amplitude. Firstly, the system control law was designed based on the adaptive backstepping method, which combined with the dynamic surface technology to effectively reduce the computational inflation problem of the virtual control law. For the uncertain terms existing in the control system, a fuzzy logic system was used for approximation. Next, the state variables and input variables in the control system were quantized separately using a uniform quantizer, and the quantized state feedback information was used in the design of the unmanned surface vehicle track tracking controller. Based on the obtained quantization information, a control law for tracking the trajectory of an unmanned surface vehicle was proposed under the conditions of simultaneous consideration of state and input quantization. The boundedness of the errors between quantized and unquantized variables in the closed-loop control system was demonstrated by a recursive approach. The stability of the designed fuzzy adaptive feedback tracking control system with state quantization and input quantization was demonstrated based on Lyapunov stability theory when both state quantization and input quantization were considered. Finally, the effectiveness of the proposed scheme is verified by two sets of simulation experiments. That is, under the simultaneous consideration of state quantification and input quantification, the unmanned surface vehicle can still maintain a good tracking performance of the ideal trajectory, and effectively reduce the execution frequency of the actuator, which is more in line with the practice of navigation engineering.

Key words: unmanned surface vehicle, trajectory tracking control, state and input quantization, fuzzy adaptive control, quantization error

中图分类号: