Traffic & Transportation Engineering

Identification Model of Driver’s Cerebrovascular Diseases Based on PPG Pulse Signal Features

Expand
  • 1.College of Design and Engineering,National University of Singapore,117575,Singapore
    2.Guangdong Road Transportation Affairs Center,Guangzhou 510101,Guangdong,China
    3.School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,Guangdong,China
    4.Modern Urban Transportation Technology Jiangsu University Collaborative Innovation Center,Southeast University,Nanjing 210096,Jiangsu,China
张嘉讯(2000-),女,博士生,主要从事智能交通检测预警技术研究。E-mail:e0954475@u.nus.edu

Received date: 2022-09-02

  Online published: 2023-01-19

Supported by

the Natural Science Foundation of Guangdong Province(2023A1515010742);the Key Project of Guangdong Regional Joint Fund(2020B1515120095)

Abstract

The physical condition of drivers is closely related to traffic safety, especially the driver’s cardiovascular health condition. Real-time monitoring of drivers’ health can help drivers understand their physical condition in time and reduce traffic accidents caused by sudden illnesses. In this study, firstly, 657 PPG (Photoplethysmography Signal) pulse wave datasets from Guilin People’s Hospital, Guangxi Zhuang Autonomous Region, China, were dichotomized numerically for cerebrovascular diseases after the noise reduction by Chebyshev Ⅱ filter and the extraction of time domain features, frequency domain features and wavelet packet features by fast Fourier method. Then, the numerically labeled cerebrovascular disease types were used as output parameters to construct driver cerebrovascular disease dataset. To solve the problem of unbalanced classification of samples in actual dataset, an oversampling supplement was performed by the SMOTE algorithm and a driver cerebrovascular disease classification model, namely SSA-DELM, was constructed based on PPG feature values, followed with model training and testing on actual datasets. The results show that the proposed classification model can provide comparatively accurate early warning for drivers suffering from cerebral infarction or cerebrovascular disease, with an accuracy of 83%, an average precision of 80%, a completeness of 76.6%, an F1 score of 0.79, and a mean average precision of 0.80. This research can provide theoretical model basis and technical support for drivers’ dynamic health monitoring system based on PPG signal. The proposed model has a large application space in the software service and intelligent medical care of the new energy automobile industry, which is in line with the sales mode of the whole industry chain of “terminal + software + service” of new energy automobile enterprises, and is also in line with modern people’s attention to environmental protection, family health and intelligent transportation.

Cite this article

ZHANG Jiaxun, ZHENG Qiuna, YU Zhenyu, et al . Identification Model of Driver’s Cerebrovascular Diseases Based on PPG Pulse Signal Features[J]. Journal of South China University of Technology(Natural Science), 2023 , 51(7) : 139 -150 . DOI: 10.12141/j.issn.1000-565X.220571

References

1 国家统计局 .中国统计年鉴—2021[M].北京:中国统计出版社,2021
2 ROLISON J J, REGEV S, MOUTARI S,et al .What are the factors that contribute to road accidents?An assessment of law enforcement views,ordinary drivers’ opinions,and road accident records[J].Accident Analysis & Prevention2018115:11-24.
3 FORT E, POURCEL L, DAVAZIES P,et al .Road accidents,an occupational risk[J].Safety Science201048(10):1412-1420.
4 马丽媛,王增武,樊静,等 .《中国心血管健康与疾病报告2021》概要[J].中国介入心脏病学杂志202230(7):481-496.
  MA Li-yuan, WANG Zeng-wu, FAN Jing,et al .Summary of China cardiovascular health and disease report 2021[J].Chinese Journal of Interventional Cardiology202230(7):481-496.
5 CHERIF F H, CHERIF L H, BENABDELLAH M,et al .Monitoring driver health status in real time[J].The Review of Scientific Instruments202091(3):035110.
6 KOO C H, ZHU H, TSANG Y T,et .al.A portable system for multiple parameters monitoring:towards assessment of health conditions and stress level in the automotive field[C]∥ Proceedings of the AEIT International Conference of Electrical and Electronic Technologies for Automotive.Turin:[s.n.],2019
7 LEE J-C, LIU H .Development of a real-time driver health detection system using a smart steering wheel[J].International Journal of Prognostics and Health Management20189:1-5.
8 于露,任晓阳,魏恒建,等 .基于PPG信号的驾驶员生理参数监测[J].大连交通大学学报202344(2):22-27.
  YU Lu, REN Xiaoyang, WEI Hengjian,et al .Driver physiological parameter monitoring based on PPG signal[J].Journal of Dalian Jiaotong University202344(2):22-27.
9 HAYASHI H, KAMEZAKI M, SUGANO S .Toward health-related accident prevention:symptom detection and intervention based on driver monitoring and verbal interaction[J].IEEE Open Journal of Intelligent Transportation Systems20212:240-253.
10 LIANG Y, LIU G, CHEN Z,et al .Figshare[EB/OL].[2022-05-04]. .
11 MOODY G B, MARK R G .A database to support development and evaluation of intelligent intensive care monitoring[C]∥Proceedings of the Conference on Computers in Cardiology 1996.Indianapolis:IEEE,1996:657-660.
12 KACHUEE M, KIANI M M, MOHAMMADZADE H,et al .Cuff-less high-accuracy calibration-free blood pressure estimation using pulse transit time[C]∥ Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS’15).[S. l.]:IEEE,2015
13 SOREL J E, HEISS G, TYROLER H A,et al .Black-white differences in blood pressure:the authors reply[J].Epidemiology19923(3):274-275.
14 吴金奖,陈建新,田峰 .可穿戴心电信号监测中运动伪影消除技术研究[J].信号处理201430(11):1388-1393.
  WU Jin-jiang, CHEN Jian-xin, TIAN Feng .Research on motion artifacts eliminating for wearable electrocardiogram signal monitoring[J].Journal of Signal Processing201430(11):1388-1393.
15 徐海津 .抗运动伪影下基于PPG的心率估计方法研究与应用[D].成都:电子科技大学,2018
16 於鹏,严良文,余越,等 .五点三次平滑算法在PPG信号降噪中的应用[J].计量与测试技术202047(6):47-50,53.
  YU Peng, YAN Liangwen, YU Yue,et al .The application of five-point cubic smoothing algorithm in noise reduction of PPG signal[J].Metrology & Measurement Technique202047(6):47-50,53.
17 李苗,侯柏成,党豪 .基于深度卷积神经网络的ECG信号分类研究[J].电脑编程技巧与维护2023(1):131-133.
  LI Miao, HOU Bo-cheng, DANG Hao .Research on ECG signal classification based on deep convolutional neural network[J].Computer Programming Skills and Maintenance2023(1):131-133.
18 ELGENDI M .Optimal signal quality index for photoplethysmogram signals[J].Bioengineering20163:3040021/1-15.
19 LIANG Y, ELGENDI M, CHEN Z,et al .An optimal filter for short photoplethysmogram signals[J].Scientific Data20185:180076.
20 LIANG Y,HEN Z, LIU G,et al .A new,short-recorded photoplethysmogram dataset for blood pressure monitoring in China[J].Scientific Data20185:180020.
21 宋海亮 .基于CAN的汽车制动测试系统的研究与实现[D].上海:上海交通大学,2011
22 于萍 .用小波技术实现非平稳信号的处理[D].青岛:中国石油大学(华东),2012
23 陈慧慧 .自动机运动规律图像数据处理方法研究[D].太原:中北大学,2010
24 杨依,方亮,岳宏,等 .脉搏波传导速度、踝臂指数及体脂肪率在心血管风险评价中的应用[J].航空航天医学杂志201526(4):393-395.
  YANG Yi, FANG Liang, YUE Hong,et al .Pulse wave conduction velocity,ankle arm index and body fat rate in the application of cardiovascular risk assessment[J].Journal of Aerospace Medicine201526(4):393-395.
25 宋晓瑞,乔爱科 .基于脉搏波检测技术的心血管健康评测[J].医用生物力学201530(5):468-473.
  SONG Xiao-rui, QIAO Ai-ke .Evaluation of cardiovascular health based on pulse wave detection technology[J].Journal of Medical Biomechanics201530(5):468-473.
26 齐咏生,樊佶,李永亭,等 .基于增强型形态学滤波的风电机组轴承故障诊断方法[J].振动与冲击202140(4):212-220.
  QI Yongsheng, FAN Ji, LI Yongting,et al .A fault diagnosis method of wind turbine bearings based on an enhanced morphological filter[J].Journal of Vibration and Shock202140(4):212-220..
27 罗通元 .风险预警技术在往复泵系统中的应用[D].北京:中国石油大学(北京),2016
28 李祝强 .基于局部线性嵌入和支持向量机的滚动轴承性能退化评估研究[D].哈尔滨:哈尔滨理工大学,2014
29 王海龙,李云赫,赵岩 . k值优化VMD-小波包分析联合降噪方法在隧道爆破信号中的应用[J].爆破器材202150(5):50-57.
  WANG Hailong, LI Yunhe, ZHAO Yan . k-value optimization of VMD-wavelet packet analysis joint noise reduction method in tunnel blasting signal[J].Blasting Equipment202150(5):50-57.
30 吴忠强,毛志华,王正,等 .基于极限学习机的浅海水深遥感反演研究[J].海洋测绘201939(3):11-15.
  WU Zhongqiang, MAO Zhihua, WANG Zheng,et al .Research on remote inversion of shallow sea bathymetry based on extreme learning machine[J].Hydrographic Surveying and Charting201939(3):11-15.
31 江晗菁 .基于SSDA-HELM-SOFTMAX的农业投入品在线分类预测方法研究与实现[D].广州:仲恺农业工程学院,2020
32 颜学龙,马润平 .基于深度极限学习机的模拟电路故障诊断[J].计算机工程与科学201941(11):1911-1918.
  YAN Xue-long, MA Run-ping .Fault diagnosis of analog circuits based on deep limit learning machine[J].Computer Engineering and Science201941(11):1911-1918.
33 马润平 .基于深度极限学习机的模拟电路故障诊断研究[D].桂林:桂林电子科技大学,2020
34 LU X, ZOU H, ZHOU H,et al .Robust extreme learning machine with its application to indoor positioning[J].IEEE Transactions on Cybernetics201546(1):194-205.
35 SHI L C, LU B L .EEG-based vigilance estimation using extreme learning machines[J].Neurocomputing2013102:135-143.
36 张文帅,王占刚 .基于改进麻雀算法优化深度极限学习机的缺失数据预测[J].电子测量技术202245(15):63-67.
  ZHANG Wenshuai, WANG Zhangang .Missing data prediction based on improved sparrow algorithm optimized deep extreme learning machine[J].Electronic Measurement Technology202245(15):63-67.
37 CHAWLA N V, BOWYER K W, HALL L O,et al .SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research200216(1):321-357.
Outlines

/