Journal of South China University of Technology(Natural Science Edition) ›› 2025, Vol. 53 ›› Issue (5): 66-81.doi: 10.12141/j.issn.1000-565X.240356
• Computer Science & Technology • Previous Articles Next Articles
WANG Qingrong1, WANG Junjie1, ZHU Changfeng2, HAO Fule1
Received:
2024-07-15
Online:
2025-05-25
Published:
2024-11-12
Contact:
王俊杰(1998—),男,硕士生,主要从事交通大数据预测与分析研究。
E-mail:876087843@qq.com
About author:
王庆荣(1977—),女,教授,主要从事交通运输系统优化与分析研究。E-mail: 329046272@qq.com
Supported by:
CLC Number:
WANG Qingrong, WANG Junjie, ZHU Changfeng, HAO Fule. Carbon Emission Prediction in Transportation Industry Based on SD-ISSA-DALSTM[J]. Journal of South China University of Technology(Natural Science Edition), 2025, 53(5): 66-81.
Table 4
Center frequency of each modal component under different K values"
K | 中心频率 | |||||||
---|---|---|---|---|---|---|---|---|
模态1 | 模态2 | 模态3 | 模态4 | 模态5 | 模态6 | 模态7 | 模态8 | |
3 | 0.403 5 | 0.203 8 | 0.074 0 | |||||
4 | 0.450 5 | 0.278 5 | 0.140 9 | 0.072 5 | ||||
5 | 0.457 9 | 0.283 6 | 0.206 6 | 0.136 6 | 0.072 4 | |||
6 | 0.400 2 | 0.342 4 | 0.276 9 | 0.205 5 | 0.136 4 | 0.072 3 | ||
7 | 0.400 1 | 0.342 3 | 0.277 0 | 0.206 4 | 0.143 1 | 0.109 8 | 0.064 6 | |
8 | 0.456 8 | 0.397 5 | 0.342 6 | 0.277 0 | 0.206 4 | 0.143 1 | 0.109 9 | 0.064 7 |
Table 5
Comparison of the results obtained by different decomposition methods"
分解方式 | 预测模型 | RMSE/106 t | MAE/106 t | MAPE/% |
---|---|---|---|---|
不进行分解 | BP | 215.521 6 | 152.114 8 | 14.678 6 |
SVR | 131.744 8 | 99.379 2 | 11.567 1 | |
LSTM | 46.125 3 | 44.537 2 | 5.662 8 | |
一次分解 | CEEMDAN-BP | 81.261 8 | 76.871 1 | 9.510 6 |
CEEMDAN-SVR | 56.371 5 | 54.599 5 | 6.823 9 | |
CEEMDAN-LSTM | 18.410 2 | 17.090 5 | 2.137 1 | |
二次分解 | SD-BP | 44.670 7 | 42.982 9 | 5.368 7 |
SD-SVR | 30.355 2 | 29.281 8 | 3.682 1 | |
SD-LSTM | 12.966 8 | 13.205 6 | 1.682 7 |
Table 8
Comparison of model prediction results"
模型 | RMSE/ 106 t | MAE/ 106 t | MAPE/ % | 训练耗时/s |
---|---|---|---|---|
LSTM | 46.125 3 | 44.537 2 | 5.662 8 | 126 |
CNN | 67.486 7 | 61.757 2 | 7.716 2 | 108 |
CNN-LSTM | 20.372 5 | 19.358 7 | 2.399 5 | 213 |
EMD-PSO-LSSVM | 16.325 9 | 15.365 3 | 1.925 0 | 839 |
EEMD-VMD-LSTM | 14.601 7 | 13.869 6 | 1.736 8 | 1 385 |
SD-ISSA-DALSTM | 5.308 8 | 3.566 1 | 0.443 9 | 1 872 |
1 | GAO M Y, YANG H L, XIAO Q Z,et al .A novel method for carbon emission forecasting based on Gom-pertz’s law and fractional grey model:evidence from American industrial sector[J].Renewable Energy,2022,181:803-819. |
2 | 朱长征,杨莎,刘鹏博,等 .中国交通运输业碳达峰时间预测研究[J].交通运输系统工程与信息,2022,22(6):291-299. |
ZHU Chang-zheng, YANG Sha, LIU Peng-bo,et al .Carbon dioxide emission peak study of transportation industry in China[J].Journal of Transportation Systems Engineering and Information Technology,2022,22(6):291-299. | |
3 | 赵金辉,李景顺,王潘乐,等 .基于Lasso-BP神经网络模型的河南省碳达峰路径研究[J].环境工程,2022,40(12):151-156,164. |
ZHAO Jinhui, LI Jingshun, WANG Panle,et al .A study of carbon peak paths in Henan province based on Lasso regression-BP neural network model[J].Environmental Engineering,2022,40(12):151-156,164. | |
4 | YANG H J, O’CONNELL J F .Short-term carbon emissions forecast for aviation industry in Shanghai[J].Journal of Cleaner Production,2020,275:122734/1-12. |
5 | 胡茂峰,郑义彬,李宇涵 .多情景下湖北省交通运输碳排放峰值预测研究[J].环境科学学报,2022,42(4):464-472. |
HU Maofeng, ZHENG Yibin, LI Yuhan .Forecasting of transport carbon emission peak in Hubei province under multiple scenarios[J].Acta Scientiae Circumstantiae,2022,42(4):464-472. | |
6 | 刘慧甜,胡大伟 .基于机器学习的交通碳排放预测模型构建与分析[J].环境科学,2024,45(6):3421-3432. |
LIU Hui-tian, HU Da-wei .Construction and analysis of machine learning based transportation carbon emission prediction model[J].Environmental Science,2024,45(6):3421-3432. | |
7 | 曾弘锐,孙文昊,何卫,等 .基于机器学习的铁路隧道施工碳排放预测模型研究[J].现代隧道技术,2023,60(6):29-39. |
ZENG Hongrui, SUN Wenhao, HE Wei,et al .Study on the carbon emission prediction model for railway tunnel construction based on machine learning[J].Modern Tunnelling Technology,2023,60(6):29-39. | |
8 | 陈亮,王金泓,何涛,等 .基于SVR的区域交通碳排放预测研究[J].交通运输系统工程与信息,2018,18(2):13-19. |
CHEN Liang, WANG Jin-hong, HE Tao,et al .Forecast study of regional transportation carbon emissions based on SVR[J].Journal of Transportation Systems Engineering and Information Technology,2018,18(2):14-19. | |
9 | 夏晓圣,陈菁菁,王佳佳,等 .基于随机森林模型的中国PM2.5浓度影响因素分析[J].环境科学,2020,41(5):2057-2065. |
XIA Xiao-sheng, CHEN Jing-jing, WANG Jia-jia,et al .PM2.5 concentration influencing factors in China based on the random forest model[J].Environmental Science,2020,41(5):2057-2065. | |
10 | 刘淳森,曲建升,葛钰洁,等 .基于LSTM模型的中国交通运输业碳排放预测[J].中国环境科学,2023,43(5):2574-2582. |
LIU Chun-sen, QU Jian-sheng, GE Yu-jie,et al .Carbon emission forecasting in China’s transportation sector based on LSTM model[J].China Environmental Science,2023,43(5):2574-2582. | |
11 | 连艳琼,苏墩煌,施生旭 .基于STIRPAT和CNN-LSTM组合模型的福建省碳达峰预测[J].环境科学,2025,46(1):10-18. |
LIAN Yan-qiong, SU Dun-huang, SHI Sheng-xu .Carbon peak prediction in Fujian province based on combined STIRPAT and CNN-LSTM models[J].Environmental Science,2025,46(1):10-18. | |
12 | 高金武,贾志桓,王向阳,等 .基于PSO-LSTM的质子交换膜燃料电池退化趋势预测[J].吉林大学学报(工学版),2022,52(9):2192-2202. |
GAO Jin-wu, JIA Zhi-heng, WANG Xiang-yang,et al .Degradation trend prediction of proton exchange membrane fuel cell based on PSO-LSTM[J].Journal of Jilin University (Engineering and Technology Edition),2022,52(9):2192-2202. | |
13 | 汪恩良,田雨,刘兴超,等 .基于WOA-BP神经网络的超低温冻土抗压强度预测模型研究[J].力学学报,2022,54(04):1145-1153. |
WANG Enliang, TIAN Yu, LIU Xingchao,et al .Predition model of compressive strength of ultra low temperature frozen soil based on WOA-BP neural network[J].Chinese Journal of Theoretical and Applied Mechanics,2022,54(4):1145-1153. | |
14 | 祖林禄,柳平增,赵妍平,等 .基于SSA-LSTM的日光温室环境预测模型研究[J].农业机械学报,2023,54(2):351-358. |
ZU Linlu, LIU Pingzeng, ZHAO Yanping,et al .Solar greenhouse environment prediction model baesd on SSA-LSTM[J].Transactions of the Chinese Society for Agricultural Machinery,2023,54(2):351-358. | |
15 | 王庆荣,王俊杰,朱昌锋,等 .融合VMD和SSA-LSSVM的交通运输业碳排放预测研究[J].环境工程,2023,41(10):124-132. |
WANG Qingrong, WANG Junjie, ZHU Changfeng,et al .Carbon emission prediction of transportation industry based on VMD and SSA-LSSVM[J].Environmental Engineering,2023,41(10):124-132. | |
16 | 张新生,任明月,陈章政 .基于CEEMD-SSA-ELM方法的建筑业碳排放预测研究[J].生态经济,2023,39(10):33-39,88. |
ZHANG Xinsheng, REN Mingyue, CHEN Zhangzheng .Research on carbon emission prediction of construction industry based on CEEMD-SSA-ELM method[J].Ecological Economy,2023,39(10):33-39,88. | |
17 | 李爱莲,全凌翔,崔桂梅,等 .融合正余弦和柯西变异的麻雀搜索算法[J].计算机工程与应用,2022,58(3):91-99. |
LI Ailian,QUAN Lingxiang,CUI Guimei,et al,Sparrow search algorithm combining sine-cosine and Cauchy mutation[J].Computer Engineering and Applications,2022,58(3):91-99. | |
18 | 回立川,陈雪莲,孟嗣博 .多策略混合的改进麻雀搜索算法[J].计算机工程与应用,2022,58(16):71-83. |
HUI Lichuan, CHEN Xuelian, MENG Sibo,et al .Improved sparrow search algorithm based on multi-strategy mixing[J].Computer Engineering and Applications,2022,58(16):71-83. | |
19 | 张雯,吴志彬,徐玖平 .基于EMD-PSO-LSSVM的碳排分解集成预测方法[J].控制与决策,2022,37(7):1837-1846. |
ZHANG Wen, WU Zhi-bin, XU Jiu-ping .A decomposition-integration forecasting method of carbon emission based on EMD-PSO-LSSVM[J].Control and Decision,2022,37(7):1837-1846. | |
20 | SUN W, REN C .Short-term prediction of carbon emissions based on the EEMD-PSO-BP model[J].Environmental Science and Pollution Research,2021,28(40):56580-56594. |
21 | SUN W, HUANG C .A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network[J].Journal of Cleaner Production,2020,243:118671/1-13. |
22 | FENG K, SONG J, YANG Z .A daily carbon emission prediction model combining two-stage feature selection and optimized extreme learning machine[J].Environmental Science and Pollution Research,2022,29:64983-64998. |
23 | 武新章,梁祥宇,朱虹谕,等 .基于CEEMDAN-GRA-PCC-ATCN的短期风电功率预测[J].山东大学学报(工学版),2022,52(6):146-156. |
WU Xinzhang, LIANG Xiangyu, ZHU Hongyu,et al .Short-term wind power prediction based on CEEMDAN-GRA-PCC-ATCN[J].Journal of Shandong University (Engineering Science),2022,52(6):146-156. | |
24 | ZHANG H, KONG X, REN C .Influencing factors and forecast of carbon emissions from transportation-taking Shandong province as an example[J].IOP Conference Series: Earth and Environmental Science,2019,300(3):032063/1-7. |
25 | QUAN C, CHENG X, YU S,et al .Analysis on the influencing factors of carbon emission in China’s logistics industry based on LMDI method[J].The Science of the Total Environment,2020,2020(734):138473-138473. |
26 | 曾晓莹,邱荣祖,林丹婷,等 .中国交通碳排放及影响因素时空异质性[J].中国环境科学,2020,40(10):4304-4313. |
ZENG Xiao-ying, QIU Rong-zu, LIN Dan-ting,et al .Spatio-temporal heterogeneity of transportation carbon emissions and its influencing factors in China[J].China Environmental Science,2020,40(10):4304-4313. | |
27 | 高金贺,黄伟玲,蒋浩鹏 .城市交通碳排放预测的多模型对比分析[J].重庆交通大学学报(自然科学版),2020,39(7):33-39. |
GAO Jinhe, HHUANG Weiling, JIANG Haopeng .Comparison of multiple forecast models of urban traffic carbon emissions[J].Journal of Chongqing Jiaotong University (Natural Sciences),2020,39(7):33-39. | |
28 | IPCC .2006 IPCC guidelines for national greenhouse gas inventories[R].Cambridge:Cambridge University Press,2006. |
29 | 王瑞,张璐婷,逯静 .基于新型相似日选取和VMD-NGO-BiGRU的短期光伏功率预测[J].湖南大学学报(自然科学版),2024,51(2):68-80. |
WANG Rui, ZHANG Luting, LU Jing .Short term photovoltaic power prediction based on new similar day selection and VMD-NGO-BiGRU[J].Journal of Hunan University (Natural Sciences),2024,51(2):68-80. |
[1] | SU Yuejiang, WEN Huiying, YUAN Minxian, et al. Travel Carbon Emission Prediction Model Based on Resident Attribute Data [J]. Journal of South China University of Technology(Natural Science Edition), 2024, 52(8): 23-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||