Journal of South China University of Technology(Natural Science Edition) ›› 2023, Vol. 51 ›› Issue (10): 68-88.doi: 10.12141/j.issn.1000-565X.230223
Special Issue: 2023绿色智慧交通系统专辑
• Green, Intelligent Traffic System • Previous Articles Next Articles
XU Zhihang1 YAO Xinpeng2 XU Zhigang1 QU Xiaobo3
Received:
2023-04-10
Online:
2023-10-25
Published:
2023-07-03
Contact:
徐志刚(1979-),男,教授,博士生导师,主要从事智能交通、车路协同、自动驾驶等研究。
E-mail:xuzhi-gang@chd.edu.cn
About author:
徐志航(1996-),男,博士生,主要从事高速公路路侧设备优化布设研究。E-mail:1140562274@qq.com
Supported by:
CLC Number:
XU Zhihang, YAO Xinpeng, XU Zhigang, et al. Review of Research on Road Traffic Detectors and Its Optimized Deployment Methods[J]. Journal of South China University of Technology(Natural Science Edition), 2023, 51(10): 68-88.
Table 1
Characteristic analysis of stationary detector"
检测器类型 | 工作原理 | 检测参数 | 安装方式 | 检测精度/% | 覆盖范围 | 影响因素 | 适用场景 |
---|---|---|---|---|---|---|---|
线圈检测器 | 电磁感应 | 流量、占有率、车速、车型 | 地下埋设 | >96 | 单条车道 | 车流速度、车流密度 | 高速公路、桥梁、隧道 |
地磁检测器 | 电磁感应 | 流量、占有率、车速、车型 | 地下埋设 | >95 | 单条车道 | 外部电磁干扰、车流速度 | 高速公路、收费站、城市道路 |
视频检测器 | 图像处理技术 | 流量、占有率、车速、车型、交通事件 | 道路悬挂布设、道路中央布设 | >90 | 多条车道 | 光线、亮度、雨雪雾天气 | 所有道路、桥梁、隧道 |
微波检测器 | 微波波束反射 | 流量、占有率、车速 | 道路边缘布设 | >95 | 多条车道 | 遮挡物遮挡、车流密度、车流速度 | 车型单一,车流稳定,车速分布均匀的道路 |
红外检测器 | 光学反射 | 流量、占有率、车速、车型 | 道路边缘布设 | >90 | 单条车道 | 能见度、雨雪霜天气 | 高速公路、收费站、城市道路 |
雷达检测器 | 雷达波束、激光反射 | 流量、占有率、车速 | 道路边缘布设 | >97 | 多条车道 | 检测区域内的干扰源、车流速度 | 所有道路、桥梁、隧道 |
超声波检测器 | 超声波束反射 | 流量、车速 | 道路悬挂布设 | >90 | 单条车道 | 噪声干扰、极端天气、车型 | 停车场、城市道路交叉路口、高速公路 |
Table 2
Characteristic analysis of mobile detector"
移动交通检测技术 | 检测交通参数 | 成本 | 检测精度 | 优点 | 缺点 |
---|---|---|---|---|---|
GPS探测车 | 交通流量、瞬时车速、行程时间、行程车速 | 低 | 较高 | 无需在路边安装检测设备,检测具有全天候连续性 | 检测数据易受干扰 |
手机探测车 | 车辆位置、车速、行程时间、行驶方向、交通事件 | 中 | 一般 | 可以收集大量数据、成本较低 | 存在丢包现象、通信转接时延 |
车牌识别检测 | 交通流量、行程时间、行程速度 | 高 | 一般 | 数据检测全天候连续性强,可以得到路网所有车辆的数据 | 投资成本高、检测精度制约因素多 |
自动车辆识别 | 交通流量、行程时间、行程速度 | 高 | 高 | 自动化程度高,检测全天候连续性强 | 投资成本、运营管理成本高 |
Table 3
Application scenarios of various road traffic detectors"
检测器类型 | 高速公路及城市快速路 | 城市道路及交通网络 |
---|---|---|
线圈检测器 | 流量计数、车速测量、车道占用、车辆分类等 | 路口交通流量统计、信号灯控制、车辆检测和分类、路段拥堵监测、道路状况监测等 |
地磁检测器 | 车辆检测、车速检测、路段流量统计等 | 车辆流量统计、车辆检测和分类、车速测量、车道占有率监测、停车位管理等 |
视频检测器 | 车道状态检测、车辆识别、车速测量、车辆分类、车流统计、交通事件检测等 | 车辆流量统计、车辆检测和分类、车速测量、交通信号控制、事故检测和监控等 |
微波检测器 | 车速测量、车流量测量、车辆分类、拥堵检测等 | 车辆流量统计、车辆检测和分类、车速测量、交通信号控制、收费系统等 |
红外检测器 | 车流计数、车道占用检测、车速测量、车辆长度测量、交通事件检测等 | 车辆流量统计、车辆检测和分类、车速测量、交通信号控制、路段拥堵监测等 |
雷达检测器 | 车辆速度和车辆存在位置精准测量、事故检测等 | 车辆流量统计、车道占有率监测、车速测量、事故检测和监控、路段拥堵监测等 |
超声波检测器 | 车辆存在监测、车流测量、速度估计等 | 车辆流量统计、车道占有率监测、车速测量、停车位管理、道路状况监测等 |
GPS探测车 | 交通流量测算、道路拥堵分析、道路安全监测等 | 车辆流量统计、车速测量、行程时间测量、道路状况监测、导航和线路优化等 |
手机探测车 | 交通流量测量、旅行时间估计、交通事件检测、道路状况检测等 | 车辆流量统计、车速测量、行程时间测量、道路状况监测、导航和线路优化等 |
车牌识别检测 | 交通流量统计、车辆超速检测、交通事故调查、车辆违章检测等 | 违法车辆检测、电子收费系统、安全监控、车辆跟踪定位、停车场管理等 |
自动车辆识别 | 车道分类、限行管理、车流统计等 | 车辆识别和分类、交通违法检测、电子收费系统、交通监控和安全、道路智能管理等 |
Table 5
Summary of research literature based on travel time estimation"
文献 | 检测器类型 | 考虑因素 | 建模方法 | 求解方法 |
---|---|---|---|---|
Liu等[ | 线圈 | 检测效益 | 数学规划 | 遗传算法 |
Danczyk等[ | 线圈 | 旅行时间估计均方误差 | 最短路径 | 改进的分支定界法 |
Danczyk等[ | 线圈 | 旅行时间估计均方误差、检测器故障概率 | 数学规划 | 基于最短路径搜索的启发式算法 |
Ban等[ | 视频 | 旅行时间估计均方误差均方误差 | 动态规划 | 最短路径算法 |
Bartin等[ | 线圈 | 旅行时间估计误差 | 聚类分析 | K均值聚类算法 |
Kianfar等[ | GPS探测车 | 旅行时间估计误差均匀度指数 | 聚类分析 | K均值聚类算法 |
Kianfar等[ | 路侧单元RSU | 网络覆盖指数、车联网通信环境 | 微观交通仿真 | 遗传算法 |
Olia等[ | 路侧单元RSU | 车联网通信环境、渗透率 | 数学规划 | 非支配排序遗传算法 |
Park等[ | 蓝牙 | 非重复交通条件 | 数学规划 | 数学软件 |
朱宁[ | 线圈 | 检测器故障情况 | 统计学 | 遗传算法 |
1 | SHLADOVER S E .PATH at 20—history and major milestones[J].IEEE Transactions on Intelligent Transportation Systems,2007,8(4):584-592. |
2 | 徐志刚,李金龙,赵祥模,等 .智能公路发展现状与关键技术[J].中国公路学报,2019,32(8):1-24. |
XU Zhi-gang, LI Jin-long, ZHAO Xiang-mo .Development status and key technologies of intelligent highway [J].China Journal of Highway and Transport,2019,32(8):1-24. | |
3 | 赵祥模,高赢,徐志刚,等 .IntelliWay-变耦合模块化智慧高速公路系统一体化架构及测评体系[J].中国公路学报,2023,36(1):176-201. |
ZHAO Xiang-mo, GAO Ying, XU Zhi-gang,et al .IntelliWay:an integrated architecture and testing methodology for intelligent highway using varied coupling modularization[J].China Journal of Highway and Transport,2023,36(1):176-201. | |
4 | AHMED Z,NAZ S, AHMED J .Minimizing transmission delays in vehicular ad hoc networks by optimized placement of road-side unit[J].Wireless Networks,2020,26:2905-2914. |
5 | JALOOLI A, SONG M, WANG W .Message coverage maximization in infrastructure-based urban vehicular networks[J].Vehicular Communications,2019,16:1-14. |
6 | LI Y, CHEN Z, YIN Y,et al .Deployment of roadside units to overcome connectivity gap in transportation networks with mixed traffic[J].Transportation Research Part C:Emerging Technologies,2020,111:496-512. |
7 | GUERRERO-IBÁÑEZ J, ZEADALLY S, CONTRERAS-CASTILLO J .Sensor technologies for intelligent transportation systems[J].Sensors,2018,18(4):1212. |
8 | 展凤萍 .智慧高速公路交通检测器组合布设方法研究[D].南京:东南大学,2017. |
9 | CHEN X, CHEN H, YANG Y,et al .Traffic flow prediction by an ensemble framework with data denoising and deep learning model[J].Physica A:Statistical Mechanics and Its Applications,2021,565:125574. |
10 | QUAN W, WANG H, GAI Z .Spot vehicle speed detection method based on short-pitch dual-node geomagnetic detector[J].Measurement,2020,158:107661. |
11 | PRAMANIK A, SARKAR S, MAITI J .A real-time video surveillance system for traffic pre-events detection[J].Accident Analysis & Prevention,2021,154:106019. |
12 | HAMDI M M, AUDAH L, RASHID S A,et al .VANET-based traffic monitoring and incident detection system:a review[J].International Journal of Electrical & Computer Engineering (2088-8708),2021,11(4):3193-3200. |
13 | SINGH S, SANTHAKUMAR S M .Evaluation of lane-based traffic characteristics of highways under mixed traffic conditions by different methods[J].Journal of The Institution of Engineers (India):Series A,2021,102(3):719-735. |
14 | LIU H, TENG K,RAI L,et al .A two‐step abnormal data analysis and processing method for millimetre‐wave radar in traffic flow detection applications[J].IET Intelligent Transport Systems,2021,15(5):671-682. |
15 | APPIAH O, QUAYSON E, OPOKU E .Ultrasonic sensor based traffic information acquisition system;a cheaper alternative for ITS application in developing countries[J].Scientific African,2020,9:e00487. |
16 | JENELIUS E, KOUTSOPOULOS H N .Travel time estimation for urban road networks using low frequency probe vehicle data[J].Transportation Research Part B:Methodological,2013,53:64-81. |
17 | STEENBRUGGEN J, BORZACCHIELLO M T, NIJKAMP P,et al .Mobile phone data from GSM networks for traffic parameter and urban spatial pattern assessment:a review of applications and opportunities[J].GeoJournal,2013,78:223-243. |
18 | ANTONIOU C, BALAKRISHNA R, KOUTSOPOULOS H N .A synthesis of emerging data collection technologies and their impact on traffic management applications[J].European Transport Research Review,2011,3:139-148. |
19 | AHMED M M, ABDEL-ATY M A .The viability of using automatic vehicle identification data for real-time crash prediction[J].IEEE Transactions on Intelligent Transportation Systems,2011,13(2):459-468. |
20 | SHAN D, SUN X, LIU J,et al .Optimization of scanning and counting sensor layout for full route observability with a bi-level programming model[J].Sensors,2018,18(7):2286. |
21 | 孙娓娓 .复杂环境下多种交通检测器最优布设研究[D].徐州:中国矿业大学,2021. |
22 | GUO Y, YANG L .Reliable estimation of urban link travel time using multi-sensor data fusion[J].Information,2020,11(5):267. |
23 | ZHAO J, GAO Y, QU Y,et al .Travel time prediction:based on gated recurrent unit method and data fusion[J].IEEE Access,2018,6:70463-70472. |
24 | CACERES N, ROMERO L M, BENITEZ F G,et al .Traffic flow estimation models using cellular phone data[J].IEEE Transactions on Intelligent Transportation Systems,2012,13(3):1430-1441. |
25 | JENELIUS E, KOUTSOPOULOS H N .Travel time estimation for urban road networks using low frequency probe vehicle data[J].Transportation Research Part B:Methodological,2013,53:64-81. |
26 | SERPAS M, HACKEBEIL G, LAIRD C,et al .Sensor location for nonlinear dynamic systems via observability analysis and MAX-DET optimization[J].Computers & Chemical Engineering,2013,48:105-112. |
27 | FU C, ZHU N, MA S .A stochastic program approach for path reconstruction oriented sensor location model[J].Transportation Research Part B:Methodological,2017,102:210-237. |
28 | GU Y, QIAN Z S, CHEN F .From twitter to detector:real-time traffic incident detection using social media data[J].Transportation Research Part C:Emerging Technologies,2016,67:321-342. |
29 | GENTILI M, MIRCHANDANI P B .Locating sensors on traffic networks:models,challenges and research opportunities[J].Transportation Research Part C:Emerging Technologies,2012,24:227-255. |
30 | LIU H X, HE X, RECKER W .Estimation of the time-dependency of values of travel time and its reliability from loop detector data[J].Transportation Research Part B:Methodological,2007,41(4):448-461. |
31 | BREMMER D, COTTON K C, COTEY D,et al .Measuring congestion:learning from operational data[J].Transportation Research Record,2004,1895(1):188-196. |
32 | WANG Z, LIU C .An empirical evaluation of the loop detector method for travel time delay estimation[J].Journal of Intelligent Transportation Systems,2005,9(4):161-174. |
33 | FUJITO I, MARGIOTTA R, HUANG W,et al .Effect of sensor spacing on performance measure calculations[J].Transportation Research Record,2006,1945(1):1-11. |
34 | LIU H X, DANCZYK A .Optimal sensor locations for freeway bottleneck identification[J].Computer‐Aided Civil and Infrastructure Engineering,2009,24(8):535-550. |
35 | DANCZYK A, LIU H X .A mixed-integer linear program for optimizing sensor locations along freeway corridors[J].Transportation Research Part B:Methodological,2011,45(1):208-217. |
36 | DANCZYK A, DI X, LIU H X .A probabilistic optimization model for allocating freeway sensors[J].Transportation Research Part C:Emerging Technologies,2016,67:378-398. |
37 | BAN X, CHU L, HERRING R,et al .Sequential modeling framework for optimal sensor placement for multiple intelligent transportation system applications[J].Journal of Transportation Engineering,2011,137(2):112-120. |
38 | BARTIN B, OZBAY K, IYIGUN C .Clustering-based methodology for determining optimal roadway configuration of detectors for travel time estimation[J].Transportation Research Record,2007,2000(1):98-105. |
39 | KIANFAR J, EDARA P .Optimizing freeway traffic sensor locations by clustering global-positioning-system-derived speed patterns[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(3):738-747. |
40 | KIANFAR J, EDARA P .Placement of roadside equipment in connected vehicle environment for travel time estimation[J].Transportation Research Record,2013,2381(1):20-27. |
41 | GENTILI M, MIRCHANDANI P B .Review of optimal sensor location models for travel time estimation[J].Transportation Research Part C:Emerging Technologies,2018,90:74-96. |
42 | OLIA A, ABDELGAWAD H, ABDULHAI B,et al .Optimizing the number and locations of freeway roadside equipment units for travel time estimation in a connected vehicle environment[J].Journal of Intelligent Transportation Systems,2017,21(4):296-309. |
43 | PARK H, HAGHANI A .Optimal number and location of Bluetooth sensors considering stochastic travel time prediction[J].Transportation Research Part C:Emerging Technologies,2015,55:203-216. |
44 | 朱宁 .交通网络检测器布设优化问题研究[D].天津:天津大学,2012. |
45 | LIU J, ZHOU X .Observability quantification of public transportation systems with heterogeneous data sources:an information-space projection approach based on discretized space-time network flow models[J].Transportation Research Part B:Methodological,2019,128:302-323. |
46 | CASTILLO E, NOGAL M, RIVAS A,et al .Observability of traffic networks optimal location of counting and scanning devices[J].Transportmetrica B:Transport Dynamics,2013,1(1):68-102. |
47 | GENTILI M, MIRCHANDANI P .Computational complexity analysis of the sensor location flow observability problem[J].Optimization Letters,2014,8:2245-2259. |
48 | CASTILLO E, COBO A, JUBETE F,et al .An orthogonally based pivoting transformation of matrices and some applications[J].SIAM Journal on Matrix Analysis and Applications,2001,22(3):666-681. |
49 | CASTILLO E, JUBETE F, PRUNEDA R E,et al .Obtaining simultaneous solutions of linear subsystems of inequalities and duals[J].Linear Algebra and its Applications,2002,346(1-3):131-154. |
50 | MAHER M J .Inferences on trip matrices from observations on link volumes:a Bayesian statistical approach[J].Transportation Research Part B:Methodological,1983,17(6):435-447. |
51 | HU S R, PEETA S, CHU C H .Identification of vehicle sensor locations for link-based network traffic applications[J].Transportation Research Part B:Methodological,2009,43(8-9):873-894. |
52 | CASTILLO E, GALLEGO I, SANCHEZ-CAMBRONERO S,et al .Matrix tools for general observability analysis in traffic networks[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(4):799-813. |
53 | CASTILLO E, GALLEGO I, MENÉNDEZ J M,et al .Link flow estimation in traffic networks on the basis of link flow observations[J].Journal of Intelligent Transportation Systems,2011,15(4):205-222. |
54 | NG M W .Synergistic sensor location for link flow inference without path enumeration:a node-based approach[J].Transportation Research Part B:Methodological,2012,46(6):781-788. |
55 | HE S .A graphical approach to identify sensor locations for link flow inference[J].Transportation Research Part B:Methodological,2013,51:65-76. |
56 | LIU Y, ZHU N, MA S,et al .Traffic sensor location approach for flow inference[J].IET Intelligent Transport Systems,2015,9(2):184-192. |
57 | XU X, LO H K, CHEN A,et al .Robust network sensor location for complete link flow observability under uncertainty[J].Transportation Research Part B:Methodological,2016,88:1-20. |
58 | SALARI M, KATTAN L, LAM W H K,et al .Optimization of traffic sensor location for complete link flow observability in traffic network considering sensor failure[J].Transportation Research Part B: Methodological,2019,121:216-251. |
59 | CASTILLO E, CONEJO A J, MENÉNDEZ J M,et al .The observability problem in traffic network models[J].Computer‐Aided Civil and Infrastructure Engineering,2008,23(3):208-222. |
60 | CASTILLO E, JIMENEZ P, MENENDEZ J M,et al .The observability problem in traffic models:algebraic and topological methods[J].IEEE Transactions on Intelligent Transportation Systems,2008,9(2):275-287. |
61 | CASTILLO E, MENÉNDEZ J M, JIMÉNEZ P .Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations[J].Transportation Research Part B:Methodological,2008,42(5):455-481. |
62 | MÍNGUEZ R, SÁNCHEZ-CAMBRONERO S, CASTILLO E,et al .Optimal traffic plate scanning location for OD trip matrix and route estimation in road networks[J].Transportation Research Part B:Methodological,2010,44(2):282-298. |
63 | HADAVI M, SHAFAHI Y .Vehicle identification sensor models for origin-destination estimation[J].Transportation Research Part B:Methodological,2016,89:82-106. |
64 | VITI F, VERBEKE W, TAMPÈRE C M J .Sensor locations for reliable travel time prediction and dynamic management of traffic networks[J].Transportation Research Record,2008,2049(1):103-110. |
65 | CASTILLO E, CALVIÑO A, LO H K,et al .Non-planar hole-generated networks and link flow observability based on link counters[J].Transportation Research Part B:Methodological,2014,68:239-261. |
66 | VITI F, RINALDI M, CORMAN F,et al .Assessing partial observability in network sensor location problems[J].Transportation Research Part B:Methodological,2014,70:65-89. |
67 | RINALDI M, CORMAN F, VITI F .Assessing the effect of route information on network observability applied to sensor location problems[J].Transportation Research Procedia,2015,10:3-12. |
68 | FU C, ZHU N, LING S,et al .Heterogeneous sensor location model for path reconstruction[J].Transportation Research Part B:Methodological,2016,91:77-97. |
69 | SALARI M, KATTAN L, GENTILI M .Optimal roadside units location for path flow reconstruction in a connected vehicle environment[J].Transportation Research Part C:Emerging Technologies,2022,38:103625. |
70 | CONTRERAS S, KACHROO P, AGARWAL S .Observability and sensor placement problem on highway segments:a traffic dynamics-based approach[J].IEEE Transactions on Intelligent Transportation Systems,2015,17(3):848-858. |
71 | AGARWAL S, KACHROO P, CONTRERAS S .A dynamic network modeling-based approach for traffic observability problem[J].IEEE Transactions on Intelligent Transportation Systems,2015,17(4):1168-1178. |
72 | CONTRERAS S, AGARWAL S, KACHROO P .Quality of traffic observability on highways with Lagrangian sensors[J].IEEE Transactions on Automation Science and Engineering,2017,15(2):761-771. |
73 | NUGROHO S A, VISHNOI S C, TAHA A F,et al .Where should traffic sensors be placed on highways?[J].IEEE Transactions on Intelligent Transportation Systems,2021,23(8):13026-13039. |
74 | CASCETTA E, NGUYEN S .A unified framework for estimating or updating origin/destination matrices from traffic counts[J].Transportation Research Part B:Methodological,1988,22(6):437-455. |
75 | WILLUMSEN L G .Estimating time-dependent trip matrices from traffic counts[C]∥Proceeding of the Ninth International Symposium on Transportation & Traffic Theory.Delft:Vun Science Press,1984:397-411. |
76 | HAZELTON M L .Estimation of origin-destination matrices from link flows on uncongested networks[J].Transportation Research Part B:Methodological,2000,34(7):549-566. |
77 | MAHER M J .Inferences on trip matrices from observations on link volumes:a Bayesian statistical approach[J].Transportation Research Part B:Methodological,1983,17(6):435-447. |
78 | SUN S, ZHANG C, YU G .A Bayesian network approach to traffic flow forecasting[J].IEEE Transactions on Intelligent Transportation Systems,2006,7(1):124-132. |
79 | SHERALI H D, SIVANANDAN R, HOBEIKA A G .A linear programming approach for synthesizing origin-destination trip tables from link traffic volumes[J].Transportation Research Part B:Methodological,1994,28(3):213-233. |
80 | YANG H, SASAKI T, IIDA Y,et al .Estimation of origin-destination matrices from link traffic counts on congested networks[J].Transportation Research Part B:Methodological,1992,26(6):417-434. |
81 | YANG H, IIDA Y, SASAKI T .An analysis of the reliability of an origin-destination trip matrix estimated from traffic counts[J].Transportation Research Part B: Methodological,1991,25(5):351-363. |
82 | YANG H, ZHOU J .Optimal traffic counting locations for origin-destination matrix estimation[J].Transportation Research Part B:Methodological,1998,32(2):109-126. |
83 | GAN L, YANG H, WONG S C .Traffic counting location and error bound in origin-destination matrix estimation problems[J].Journal of Transportation Engineering,2005,131(7):524-534. |
84 | HU S R, LIOU H T .A generalized sensor location model for the estimation of network origin-destination matrices[J].Transportation Research Part C:Emerging Technologies,2014,40:93-110. |
85 | SHAO H, LAM W H K, SUMALEE A,et al .Estimation of mean and covariance of peak hour origin-destination demands from day-to-day traffic counts[J].Transportation Research Part B:Methodological,2014,68:52-75. |
86 | FU H, LAM W H K, SHAO H,et al .Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects[J].Transportation Research Part E:Logistics and Transportation Review,2022,157:102555. |
87 | KOBLE H M, ANDERSON G M, GOLDBLATT R B .Formulation of guidelines for locating freeway sensors[R].Washington D C:Federal Highway Admin,1979. |
88 | HAWAS Y E .A fuzzy-based system for incident detection in urban street networks[J].Transportation Research Part C:Emerging Technologies,2007,15(2):69-95. |
[1] | ZHANG Rui-hua CHENG He-you LIANG Yu. Event Detection Scheme Based on Max-Flow /Min-Cut Algorithm [J]. Journal of South China University of Technology (Natural Science Edition), 2016, 44(1): 139-144. |
[2] | . Estimationof Expressway Section Travel Time Based on Correction Algorithm [J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43(4): 20-27. |
[3] | Tian Yin Dong Hong- hui Jia Li- min Wang Lei- yun Li Si- yu. Multi- Sensor Signature Fusion Algorithm for Vehicle Type Classification [J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42(3): 52-58. |
[4] | He Jun-hui Tang Shao-hua. Evaluation Model of Steganography Security and Its Application [J]. Journal of South China University of Technology (Natural Science Edition), 2008, 36(4): 86-92. |
[5] | Hou Wei-kun Ye Wu Feng Sui-li Ke Feng. Iterative Maximum Likelihood Channel Estimation of OFDM Systems via Superimposed Training Sequence [J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(9): 16-19,35. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||