Journal of South China University of Technology(Natural Science Edition) ›› 2004, Vol. 32 ›› Issue (9): 23-28.

Previous Articles     Next Articles

A New Fuzzy Clustering Algorithm of Categorical Data Set Based on the Kernel Method

Wu Zhong- dong1 Gao Xin- bo1 Xie Wei- xin2   

  1. 1.School of Electronic Engineering‚Xidian Univ.‚Xi’an710071‚Shaanxi‚China;
    2.College of Information Engineering‚Shenzhen Univ.‚Shenzhen518060‚Guangdong‚China
  • Received:2003-12-10 Online:2004-09-20 Published:2015-09-09
  • Contact: 伍忠东(1968-)‚男‚博士生‚副教授‚主要从事模糊信息处理、机器学习和信息安全方面的研究.伍忠东(1968-)‚男‚博士生‚副教授‚主要从事模糊信息处理、机器学习和信息安全方面的研究. E-mail:wuzhd@lab202.xidian.edu.cn
  • About author:伍忠东(1968-)‚男‚博士生‚副教授‚主要从事模糊信息处理、机器学习和信息安全方面的研究.
  • Supported by:

Abstract: Aiming at the clustering of the categorical data and by extending the kernel method to the fast efficient fuzzy c-means clustering algorithm‚a fuzzy kernel c-means (FKCM) clustering algorithm based on the kernel func-tion was constructed.In this algorithm‚the empirical kernel matrix is applied in order to fully utilize the dissimilarity information among the data.Unlike the fuzzy k-mode algorithm‚the modes in the new algorithm need not be directly calculated in each iteration‚thus improving the precision and stability of the clustering algorithm and making the new algorithm insensitive to the selection of mode(centroid) initialization.A simulation was finally carried out on the actu-al linearly and nonlinearly separable categorical data sets‚which demonstrates the effectiveness of the proposed algo-rithm.

Key words:  categorical data, clustering, data mining, fuzzy c-means, kernel method