交通安全

开口位置对高速列车车厢内火灾演化规律的影响

  • 周之涵 ,
  • 郗艳红 ,
  • 毛军 ,
  • 于桂兰
展开
  • 北京交通大学 土木建筑工程学院,北京 100091
周之涵(1994—),男,博士生,主要从事火灾安全控制及行车安全等研究。E-mail: 1397981554@qq.com

收稿日期: 2024-07-01

  网络出版日期: 2024-12-11

基金资助

国家自然科学基金项目(52072027);内蒙古自然科学基金项目(2023LHMS01010);北京交通大学中央高校基本科研业务费重点项目(2024JBZY025)

Effect of Opening Positions on Fire Evolution in High-Speed Train Carriages

  • ZHOU Zhihan ,
  • XI Yanhong ,
  • MAO Jun ,
  • YU Guilan
Expand
  • School or Cicil Engineering,Beijing Jiaotong University,Beijing 100044,China
周之涵(1994—),男,博士生,主要从事火灾安全控制及行车安全等研究。E-mail: 1397981554@qq.com

Received date: 2024-07-01

  Online published: 2024-12-11

Supported by

the National Natural Science Foundation of China(52072027);the Natural Science Fundation of Nei Mongol Autonomous Region(2023LHMS01010)

摘要

高速列车车厢内发生火灾时极易引起窗户破裂,从而形成侧向开口,显著影响火灾燃烧状态及温度分布。采用1∶8缩尺模型实验与数值模拟相结合的方法,研究不同的开口位置对车厢内火灾演化的影响,并定量研究了开口位置和火源功率共同影响下,高速列车车厢内部火焰移动速度及温度纵向衰减规律。结果表明:在各个开口位置,随着火源功率的增加,车厢内部火灾演化和开口处烟气/火焰均依次经历室内燃料充分燃烧阶段、缺氧燃烧阶段和持续溢流阶段;车厢内最高温度随火源功率的上升分为3种不同的趋势,首先随着火源功率的上升而上升,随后缓慢下降,最后急剧降低,这与车厢内的火焰演化规律一一对应。讨论了火源功率与开口位置对车厢内火焰移动速度的影响,并给出了火源移动速度的预测公式。结果表明:当火源功率为50.80 kW时,开口位置对火焰移动速度影响较小;当火源功率大于50.80 kW时,开口位置2-4时的火焰移动速度随着开口与火源距离的增大而减小,开口位置1的火焰移动速度最慢。该文研究了车厢内最高温度及开口位置两侧温度衰减规律,并建立了高速列车车厢火灾不同开口位置,开口左、右两侧的温度衰减预测模型,研究结果对于高速列车车厢火灾的防灾减灾具有一定的参考价值。

本文引用格式

周之涵 , 郗艳红 , 毛军 , 于桂兰 . 开口位置对高速列车车厢内火灾演化规律的影响[J]. 华南理工大学学报(自然科学版), 2025 , 53(7) : 116 -125 . DOI: 10.12141/j.issn.1000-565X.240349

Abstract

During a fire in a high-speed train carriage, window breakage can create lateral openings, significantly affecting combustion behavior and temperature distribution. This study employed a combination of 1∶8 scaled model experiments and numerical simulations to investigate the influence of different opening positions on fire evolution inside the carriage. Additionally, it quantitatively analyzes the combined effects of opening position and heat release rate on flame propagation speed and longitudinal temperature attenuation. The results show that, for all opening positions, as the heat release rate increases, fire evolution and smoke/flame behavior at the openings undergo three distinct stages: (1) a fully developed combustion stage, (2) an oxygen-deficient combustion stage, and (3) a continuous overflow stage. The maximum internal temperature exhibits three trends with increasing heat release rate: an initial rise, followed by a gradual decline, and finally a sharp decrease, corresponding directly to fire development patterns within the carriage. The study further examines the effects of heat release rate and opening position on flame propagation speed and proposes a predictive formula for flame movement. The findings show that when the heat release rate is 50.80 kW, the opening position has minimal impact on flame propagation speed. However, when the heat release rate exceeds 50.80 kW, flame speed at opening position 2-4 decreases as the distance between the opening and the fire source increases, while opening position 1 exhibits the slowest flame propagation. Additionally, the study analyzed the maximum internal temperature and the temperature attenuation patterns on both sides of the openings, and established a predictive model for temperature attenuation at different opening positions in high-speed train carriage fires. The research findings provide valuable insights for fire prevention and mitigation strategies in high-speed train carriages.

参考文献

[1] QUINTIERE J G., RINKINEN W J, JONES W W .The effect of room openings on fire flume entrainment[J].Combustion Science and Technology198126(5/6):193-201.
[2] LEE Y P, DELICHATSIOS M A, SILCOCK G W H .Heat fluxes and flame heights in fa?ades from fires in enclosures of varying geometry[J].Proceedings of the Combustion Institute200731(2):2521-2528.
[3] REN F, HU L, ZHANG X,et al .Temperature evolution from stratified- to well-mixed condition inside a fire compartment with an opening subjected to external wind[J].Proceedings of the Combustion Institute202138(3):4495-4503.
[4] SUN X, HU L, ZHANG X,et al .Experimental study of flame extinction with fuel diffusion combustion inside a wall-opening compartment under reduced ventilation conditions[J].Fuel2021289:119781/1-11.
[5] INGASON H .Model scale railcar fire tests[J].Fire Safety Journal200742(4):271-282.
[6] NG Y W, CHOW W K, CHENG C H,et al .Scale modeling study on flame colour in a ventilation-limited train car pool fire[J].Tunnelling and Underground Space Technology201985:375-391.
[7] 高子鹤 .隧道内受限火羽流行为特征及竖井自然排烟机理研究[D].合肥:中国科学技术大学,2016.
[8] FAN C G, JI J, GAO Z H,et al .Experimental study on transverse smoke temperature distribution in road tunnel fires[J].Tunnelling and Underground Space Technology201337:89-95.
[9] TAGAWA M, OHTA Y .Two-thermocouple probe for fluctuating temperature measurement in combustion—rational estimation of mean and fluctuating time constants[J].Combustion and Flame1997109(4):549-560.
[10] BROHEZ S, DELVOSALLE C, MARLAIR G .A two-thermocouples probe for radiation corrections of measured temperatures in compartment fires[J].Fire Safety Journal200439(5):399-411.
[11] XI Y, ZHOU Z, LIAN H,et al .Temperature variation inside a corridor-like enclosure under limited ventilation[J].Tunnelling and Underground Space Technology2022126:104539/1-14.
[12] XI Y, ZHOU Z, MAO J,et al .Maximum ceiling temperature and longitudinal distribution in a corridor-like enclosure with opening[J].Tunnelling and Underground Space Technology2023134:104994/1-11.
[13] 郗艳红,渠述强,毛军,等 .隧道列车火灾玻璃破裂开口火溢流行为特性研究[J].华南理工大学学报(自然科学版)202149(5):56-64.
  XI Yanhong, QU Shuqiang, MAO Jun,et al .Research on behavior characteristics of flame ejected from broken glass in tunnel train fire accident[J].Journal of South China University of Technology (Natural Science Edition)202149(5):56-64.
[14] SINGH A V, GOLLNER M J .A methodology for estimation of local heat fluxes in steady laminar boundary layer diffusion flames[J].Combustion and Flame2015162(5):2214-2230.
[15] CONG W, SHI L, SHI Z,et al .Numerical study on the ceiling gas temperature in a subway train with different fire locations[J].Building Simulation202215(4):549-560.
[16] INGASON H, LI Y Z .Model scale tunnel fire tests with longitudinal ventilation[J].Fire Safety Journal201045(6):371-384.
[17] CONG W, HE K, YANG H,et al .Experimental study on temperature characteristics in a subway train carriage with lateral openings in a longitudinally ventilated tunnel[J].Tunnelling and Underground Space Technology2023131:104814/1-12.
[18] 从伟 .地铁隧道/列车双狭长受限空间火灾烟气蔓延与特征参数演化规律[D].合肥:中国科学技术大学,2023.
文章导航

/