材料科学与技术

混凝土环境中β-甘油磷酸钠影响钢筋阻锈行为研究

展开
  • 1.东南大学 材料科学与工程学院,江苏 南京 211189
    2.江苏省建筑科学研究院有限公司,高性能土木工程材料 国家重点试验室,江苏 南京 210008
王潇舷(1992-),女,博士生,主要从事钢筋混凝土耐久性研究。E-mail:xiaoxian_wang@foxmail.com
刘加平(1967-),男,教授、博士生导师,主要从事钢筋混凝土耐久性研究。

收稿日期: 2023-01-05

  网络出版日期: 2023-09-27

基金资助

国家重点研发计划项目(2021YFF0500802,2021YFF0500803);东南大学优秀博士学位论文培育基金资助项目(YBPY21)

Study on Sodium β-glycerophosphate in Concrete Affects the Inhibited Behavior of Steel Bar

Expand
  • 1.School of Materials Science and Engineering,Southeast University,Nanjing 211189,Jiangsu,China
    2.National Key Laboratory of High Performance Civil Engineering Materials,Jiangsu Building Science Research Institute Co. ,Ltd. ,Nanjing 210008,Jiangsu,China
王潇舷(1992-),女,博士生,主要从事钢筋混凝土耐久性研究。E-mail:xiaoxian_wang@foxmail.com
刘加平(1967-),男,教授、博士生导师,主要从事钢筋混凝土耐久性研究。

Received date: 2023-01-05

  Online published: 2023-09-27

Supported by

the National Key Research and Development Project of China(2021YFF05008022021YFF0500803); the Southeast University Outstanding Doctoral Dissertation Cultivation Fund(YBPY21)

摘要

在混凝土高碱环境中,为了提高混凝土中钢筋抗氯离子侵蚀能力,采用新型环保型有机阻锈剂——β-甘油磷酸钠保护钢筋,达到延长钢筋混凝土结构整体寿命的目的。本文通过采用电化学方法对该种有机阻锈剂作用下,不同阳离子类型的模拟孔溶液中钢筋性能演变过程进行实时监测,并获取相应的关键参数,探究了钝化时期β-甘油磷酸钠与钢筋钝化膜,以及维钝时期,β-甘油磷酸钠、钢筋钝化膜与氯离子之间的作用关系,揭示了该种有机物的阻锈机制。通过OCP、LPR以及EIS电化学测试方法得到的结果表明:β-甘油磷酸钠与钝化膜中Fe氧化物/氢氧化物通过物理化学作用进行结合,使得钢筋表面形成阻锈能力更强的保护膜,从而提高了钢筋抗氯离子侵蚀能力。4种模拟孔溶液中钢筋抗氯离子侵蚀能力分别为NaOH+0.1 mol/L β-甘油磷酸钠>饱和澄清Ca(OH)2>NaOH>饱和澄清Ca(OH)2+0.1 mol/L β-甘油磷酸钠;其中,NaOH,NaOH+0.1 mol/L β-甘油磷酸钠与饱和澄清Ca(OH)2溶液中钢筋相应的临界氯离子浓度(ccrit)分别为0.02、0.07、0.04 mol/L,而饱和澄清Ca(OH)2+0.1 mol/L β-甘油磷酸钠中钢筋未生成有效钝化膜。除此之外,β-甘油磷酸钠加入以Na+为主的模拟孔溶液中,将促进钢筋表面形成更致密的钝化膜,钝化膜形成速率更快,即在72 h就可形成80%以上钝化膜,阻锈效率则高达99.80%;进一步对比分析Na+与Ca2+溶液自身对钢筋抗氯离子侵蚀能力的影响可知,Ca2+溶液更有利于抵抗氯离子侵蚀能力,阻锈效率达到90%以上。

本文引用格式

王潇舷, 刘加平, 穆松, 等 . 混凝土环境中β-甘油磷酸钠影响钢筋阻锈行为研究[J]. 华南理工大学学报(自然科学版), 2024 , 52(3) : 28 -40 . DOI: 10.12141/j.issn.1000-565X.230030

Abstract

In the high alkaline environment of concrete, in order to improve the resistance of steel bar in concrete to chloride ion erosion, this study adopted a new environmentally friendly organic rust inhibitor-β-glycerophosphate sodium to protect the steel bar and achieve the purpose of extending the service life of reinforced concrete structures. In this study, the electrochemical measurements were used to monitor the evolution properties of the steel embedded in concrete in real time. The corresponding key parameters were obtained to explore the relationship between sodium β-glycerophosphate and steel passive film in the passivation period, as well as the relationship among sodium β-glycerophosphate, steel passive film and chloride ions during the maintenance passivation period, and then the rust resistance mechanism of this kind of organic matter was revealed. The results obtained by OCP, LPR and EIS electrochemical testing methods show that: β-sodium glycerophosphate forms a more density protective film through physicochemically interacting with Fe oxides/hydroxides on the steel surface, so as to make the surface of the steel bar form a protective film with more inhibited behavior, which also improves the resistance of the steel bar under chloride ion erosion. The resistance of the steel bar in each of the four solutions is: NaOH + 0.1 mol/L sodium β-glycerophosphate > saturated clarified Ca(OH)2 > NaOH > saturated clarified Ca(OH)2 + 0.1 mol/L sodium β-glycerophosphate. Among them, the critical chloride ion concentrations (ccrit) of steel bars in NaOH, NaOH + 0.1 mol/L sodium β-glycerophosphate and saturated clarified Ca(OH)2 solutions are: 0.02 mol/L, 0.07 mol/L, and 0.04 mol/L, respectively, while no effective passive film is generated on the steel bar in saturated clarified Ca(OH)2 + 0.1 mol/L sodium β-glycerophosphate. In addition, the addition of sodium β-glycerophosphate to Na+ solutions can promote the formation of a more dense passive film on the steel bar surface with a faster passivation rate. That is, more than 80% passivation film can be formed in 72 h, and the rust inhibitor rate is as high as 99.80%. Furthermore, further comparative analyses of the effects the Na+ and Ca2+ solutions themselves on the resistance of the steel bar under chloride ions erosion show that Ca2+ solution is more conducive to the resistance to chloride ion erosion ability, and the corrosion inhibition efficiency is more than 90%.

参考文献

1 PRADHAN B .A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete:a review[J].Materials Today:Proceedings202265(2):1360-1366.
2 XU P, JIANG L, GUO M Z,et al .Influence of sulfate salt type on passive film of steel in simulated concrete pore solution[J].Construction and Building Materials2019223:352-359.
3 SABEL C F, VICTOR D G .Governing global problems under uncertainty:making bottom-up climate policy work[J].Climatic Change2015144(1):15-27.
4 KAMARUZZAMAN W M I W M, NASIR N A M, HAMIDI N A S M,et al .Frontiers in organic corrosion inhibitors for chloride and acidic media:a review[J].Journal of Bio- and Tribo-Corrosion20228(2):1-18.
5 ANGST U M .Challenges and opportunities in corrosion of steel in concrete[J].Materials and Structures201851(1):1-20.
6 BOLZONI F, BRENNA A, ORMELLESE M .Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete[J].Cement and Concrete Research2022154:1-9.
7 RAJA P B, GHOREISHIAMIRI S, ISMAIL M .Natural corrosion inhibitors for steel reinforcement in concrete-a review[J].Surface Review and Letters201522(3):1-8.
8 BOLZONI F, COPPOLA L, GOIDANICH S,et al .Corrosion inhibitors in reinforced concrete structures Part 1:preventative technique [J].Corrosion Engineering,Science and Technology201339(3):219-228.
9 VERMA C, OLASUNKANMI L O, EBENSO E E,et al .Substituents effect on corrosion inhibition performance of organic compounds in aggressive ionic solutions:a review[J].Journal of Molecular Liquids2018251:100-118.
10 GENG J, LIU J, YAN J,et al .Chemical composition of corrosion products of rebar caused by carbonation and chloride[J].International Journal of Corrosion20182018:1-7.
11 XU Y, GUO X, CHEN N,et al .Synthesis and corrosion inhibitory effect of a novel β-amino alcohol compound[J].Colloids and Surfaces A Physicochemical and Engineering Aspects2021610(3):1-9.
12 LOTHENBACH B, WINNEFELD F, ALDER C,et al .Effect of temperature on the pore solution,microstructure and hydration products of Portland cement pastes[J].Cement and Concrete Research200737(4):483-491.
13 GHODS P, ISGOR O B, CARPENTER G J C,et al .Nano-scale study of passive films and chloride-induced depassivation of carbon steel rebar in simulated concrete pore solutions using FIB/TEM[J].Cement and Concrete Research201347:55-68.
14 赵冰,杜荣归,林昌健 .三种有机缓蚀剂对钢筋阻锈作用的电化学研究[J].电化学200511(4):382-386.
  ZHAO Bing, DU Ronggui, LIN Changjian .A study of three corrosion inhibitors for reinforcing steel in SPS solution by electrochemical methods[J].Electrochemistry200511(4):382-386.
15 NER B E .Corrosion inhibitors for reinforced concrete-an EFC state of the art report[J].Corrosion of Reinforcement in Concrete:Monitoring,Prevention and Rehabilitation Techniques,201438:170-184.
16 STEFANONI M, ANGST U, ELSENER B .Influence of calcium nitrate and sodium hydroxide on carbonation-induced steel corrosion in concrete[J].Corrosion201975(7):737-744.
17 SINGH J K, YANG H M, LEE H S,et al .Role of L-arginine on the formation and breakdown of passive film onto the steel rebars surface in chloride contaminated concrete pore solution[J].Journal of Molecular Liquids2021337:1-15.
18 TOUJAS S, VAZQUEZ M, VALCARCE M B .Unexpected effect of citrate ions on the corrosion process of carbon steel in alkaline solutions[J].Corrosion Science2017128(11):94-99.
19 周霄骋,穆松,马麒,等 .混凝土模拟孔溶液中有机钢筋阻锈剂的加速评价及等效性分析[J].硅酸盐学报202149(8):1713-1721.
  ZHOU Xiaocheng, MU Song, MA Qi,et al .Accelerated evaluation of organic steel corrosion inhibitor in simulated pore solution of concrete and its equivalence analysis[J].Journal of the Chinese Ceramic Society202149(8):1713-1721.
20 POURBAIX M .Applications of electrochemistry in corrosion science and in practice[J].Corrosion Science197414(1):25-82.
21 PEDEFERRI P, PEDEFERRI P .Pourbaix diagrams[M].Corrosion Science and Engineering2018:57-72.
22 THOMPSON W T, KAYE M H, BALE C W,et al .Pourbaix diagrams for multielement systems[J].Uhlig’s Corrosion Handbook20113:103-109.
23 BEVERSKOG B, PUIGDOMENECH I .Revised pourbaix diagrams for iron at 25-300 C[J].Corrosion Science199638(12):2121-2135.
24 MCCAFFERTY E .Introduction to corrosion science[M].New York,NY:Springer,2010.
25 DAS J K, PRADHAN B .Effect of cation type of chloride salts on corrosion behaviour of steel in concrete powder electrolyte solution in the presence of corrosion inhibitors[J].Construction and Building Materials2019208(30):175-191.
26 ZHENG H, DAI J G, POON C S,et al .Influence of calcium ion in concrete pore solution on the passivation of galvanized steel bars[J].Cement and Concrete Research2018108:46-58.
27 WANG D, MING J, SHI J .Enhanced corrosion resistance of rebar in carbonated concrete pore solutions by Na2HPO4 and benzotriazole[J].Corrosion Science2020174:1-12.
28 TEYMOURI F, SAMIEIi I, ALLAHKARAM S R,et al .Passive film alteration of reinforcing steel through [MoO42-]/[RCOO-]interfacial co-interaction for enhanced corrosion resistance in chloride contaminated concrete pore solution[J].Journal of Molecular Liquids2022356:1-18.
29 ZHAO Y, PAN T, YU X,et al .Corrosion inhibition efficiency of triethanolammonium dodecylbenzene sulfonate on Q235 carbon steel in simulated concrete pore solution[J].Corrosion Science2019158:1-12.
30 SHI J, SUN W, JIANG J,et al .Influence of chloride concentration and pre-passivation on the pitting corrosion resistance of low-alloy reinforcing steel in simulated concrete pore solution[J].Construction & Building Materials2016111(15):805-813.
31 QIANG Y, ZHANG S, XU S,et al .The effect of 5-nitroindazole as an inhibitor for the corrosion of copper in a 3.0% NaCl solution[J].RSC Adv20155(78):63866-63873.
32 SáNCHEZ M, GREGORI J, ALONSO M C,et al .Anodic growth of passive layers on steel rebars in an alkaline medium simulating the concrete pores[J].Electrochimica Acta200652(1):47-53.
33 XU W, DAUB K, ZHANG X,et al .Oxide formation and conversion on carbon steel in mildly basic solutions[J].Electrochimica Acta200954(24):5727-5738.
34 FREIRE L, NóVOA X R, MONTEMOR M F,et al .Study of passive films formed on mild steel in alkaline media by the application of anodic potentials[J].Materials Chemistry and Physics2009114(2/3):962-972.
35 WANG F, ZHANG Z, WU S,et al .Effect of inhibitor on adsorption behavior and mechanism of micro-zone corrosion on carbon steel[J].Materials201912(12):1901-1911.
文章导航

/